
ОСНОВЫ ИНФОРМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ 

ТЕХНИКИ 
 

 
ПРОБНОЕ УЧЕБНОЕ ПОСОБИЕ 
для средних учебных заведений 



 2

В двух частях 

• 

ЧАСТЬ ПЕРВАЯ 
 

Под редакцией 
А. П. Ершова и В. М. Монахова 

 
 
 

Рекомендовано 
Главным управлением школ 

Министерства просвещения СССР 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

МОСКВА 
«ПРОСВЕЩЕНИЕ» 1985 

 
 
 
 
 



 3

ББК 73я72 
0-75 

 
 
 
 
 
 
 

А. П. ЕРШОВ, В. М. МОНАХОВ, С. А. БЕШЕНКОВ, 
Я. Э. ГОЛЬЦ, А. А. КУЗНЕЦОВ, Э. И. КУЗНЕЦОВ, 

М. П. ЛАПЧИК, Д. О. СМЕКАЛИН 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Основы информатики и вычислительной техники: Проб. 

0-75 учеб. пособие для сред. учеб. заведений. В 2-х ч. Ч. 1/ 

А. П. Ершов, В. М. Монахов, С. А. Бешенков и др.; Под ред. 

А. П. Ершова, В. М. Монахова.— М.: Просвещение, 1985.— 

96 с, ил. 

В этом учебном пособии даны первоначальные сведения об ЭВМ, их устройстве и приме-
нении, о подготовке решения задач на ЭВМ с помощью алгоритмов. В конце каждого па-
раграфа приводятся вопросы для повторения теории и упражнения. Пособие рассчитано 
для использования учащимися средних специальных учебных заведений, профессиональ-
но-технических училищ, средней общеобразовательной школы. 
4306020400-516                                            ББК 73я72 + 32.973я72 
103(03)-85          ИНф. ПИСЬМ0                               001.8(075)+ 6Ф7.3(075) 
 
 
© Издательство «Просвещение», 1985 г. 

 



 4

ВВЕДЕНИЕ 

РОЛЬ ЭВМ В СОВРЕМЕННОМ ОБЩЕСТВЕ 
Мы с вами начинаем изучать основы информатики и вычислительной техники. Ин-

форматика исследует законы и методы переработки и накопления информации. Эта наука 
появилась недавно — во второй половине XX в. Ее развитие связано с появлением элек-
тронно-вычислительных машин (ЭВМ), мощных универсальных устройств для хранения и 
переработки информации. ЭВМ называют также компьютерами (от английского слова 
computer — вычислитель). 

Потребность выразить и запомнить информацию привела к появлению речи, пись-
менности и изобразительного искусства. В дальнейшем необходимость передачи и рас-
пространения информации вызвала к жизни книгопечатание, почтовую связь. Появление 
телеграфа, телефона, радио и телевидения позволило передавать огромные потоки тексто-
вой информации и изображений со скоростью света. Однако целенаправленная обработка 
этой информации до самого последнего времени проводилась только человеком. 

Использование ЭВМ позволяет теперь переложить часть этой обработки на автома-
тические устройства, способные достаточно долго работать без участия человека и со ско-
ростью, в несколько миллионов раз превышающей скорость обработки информации чело-
веком. 

Универсальность ЭВМ, ее способность к целенаправленной переработке различных 
видов информации и объясняют происходящий сейчас стремительный процесс внедрения 
ЭВМ в самые разные сферы деятельности человека в современном  обществе. 

Внедрение ЭВМ приводит к коренной перестройке технологии производства во мно-
гих отраслях народного хозяйства, повышению производительности и улучшению усло-
вий труда людей. Разумеется, внедрение вычислительной техники невозможно без обуче-
ния людей, которые будут ее использовать (их часто называют пользователями ЭВМ). Это 
обучение начинается в школе. В начальной школе вы научились читать и писать — стали 
грамотными. В IX и X классах вы постигнете азы второй грамотности — компьютерной. 

Область применений ЭВМ чрезвычайно широка. 
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Важнейшим средством современного научного исследования является математиче-

ское моделирование физических явлений и исследование этих моделей с помощью ЭВМ. 
Современные компьютеры позволяют, например, проводить сложнейшие расчеты при 
создании установок термоядерного синтеза или сверхзвуковых самолетов (рис. 1). 

Без экспериментов невозможен научно-технический прогресс. Эксперименты с тер-
моядерными реакторами, аэродинамическими трубами, ускорителями очень сложны и до-
рогостоящи. ЭВМ позволяют заменить реальные эксперименты в тысячи раз более деше-
выми машинными, вычислительными экспериментами. Кроме того, такие вычислитель-
ные эксперименты часто можно проводить во много раз быстрее, чем настоящие. Нако-
нец, в некоторых областях науки, например в астрофизике, проведение реальных экспе-
риментов и вовсе невозможно. Здесь на помощь исследователю приходит вычислитель-
ный эксперимент. 
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Одной из наиболее трудоемких вычислительных задач является задача прогноза по-

годы. Для ее решения необходимо собрать и проанализировать информацию, получаемую 
со спутников и метеостанций, выполнить огромный объем вычислений, необходимых для 
решения уравнений, возникающих при математическом моделировании процессов в атмо-
сфере и океане, наконец, представить полученные результаты в удобной для человека форме. 
Все эти этапы немыслимы без применения ЭВМ (рис. 2). 

 

 
 
Компьютеры нужны не только для проведения машинных экспериментов, но и для 

обработки результатов реальных экспериментов. Современный физический или биологи-
ческий эксперимент часто дает столько информации, что обработать ее без ЭВМ практи-
чески невозможно (рис. 3). 

Использование ЭВМ позволило в последние годы создать новый метод получения 
изображения внутренних частей непрозрачных тел. Этот метод называется томографией. 
Он позволяет получать изображение гораздо лучшего качества, чем рентгеноскопия. То-
мография основана на способности ЭВМ быстро выполнить сотни миллионов арифмети-
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ческих действий над числами. Именно такое количество действий требуется в томографии 
для получения одного-единственного изображения. 

 

 
 
 Томография позволяет обнаружить дефекты, скрытые в глубине детали, или призна-

ки заболевания, скрытые в тканях человеческого организма (рис. 4). ЭВМ способна и соз-
давать изображения, в том числе движущиеся, «живущие». Мультфильмы, созданные 
компьютерами, уже используются для тренировки пилотов, водителей и т. д.  

 

 
 
Например, пилот может с помощью специального тренажера, управляемого ЭВМ, не 

покидая земли, отработать навыки управления новым самолетом или тренироваться в по-
садке на полосу нового аэропорта (рис.5). 

Графические построения и расчеты с помощью ЭВМ различных машиностроитель-
ных, авиационных, автомобильных деталей и конструкций являются составной частью 
систем автоматизированного проектирования (сокращенно САПР). Такие системы во мно-
го раз повышают производительность труда конструктора и сокращают сроки разработки.  
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Сидя перед подключенным к ЭВМ экраном (подобным телевизионному), конструк-

тор автомобиля, например, может скомандовать ЭВМ изобразить отдельные части и узлы 
автомобиля, что позволяет оценить внешний вид и компоновку (рис. 6). ЭВМ может также 
произвести моделирование работы этих узлов и показать их части, где наиболее вероятна 
поломка при эксплуатации. 

Одной из важных областей применения компьютеров являются справочно-
информационные системы. Возможно, вы видели на вокзале автоматическую справочную. 
Она имеет несколько десятков кнопок, около каждой из которых написан вопрос. Нажав 
на любую из них, можно прочесть ответ на соответствующий вопрос. Такая система мо-
жет отвечать только на вопросы из заданного списка с помощью заранее подготовленных 
табличек с ответами. Бывают, однако, и более сложные задачи, которые система такого 
рода решить не в состоянии. Одна из таких задач, которую нельзя решить без компьютера, 
возникает при продаже авиабилетов. Эта задача может быть решена с помощью мощной 
ЭВМ, соединенной с большим числом специальных устройств — терминалов, за которы-
ми работают кассиры. Информация о всех рейсах самолетов, об уже занятых и еще сво-
бодных местах на все эти рейсы хранится в памяти ЭВМ. Эта информация должна опера-
тивно меняться при каждой покупке билета, при каждом назначении дополнительного 
рейса и т. д. С другой стороны, эта информация или некоторый результат ее переработки 
должны по требованию кассира быстро выдаваться на экран терминала. Наконец, когда 
пассажир выбрал нужный рейс или маршрут с пересадками, печатание соответствующего 
авиационного билета тоже должно проводиться автоматически (рис. 7). Со всеми этими 
задачами успешно справляется автоматизированная система продажи авиабилетов «Сире-
на-2», услугами которой вам еще доведется воспользоваться. 
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Информационные системы, построенные на базе ЭВМ, могут оказаться полезными 

не только при покупке авиабилетов, но и при решении многих других задач. Они могут 
помочь в разных исследованиях, например в химии. Если химик прошлого века мог пом-
нить свойства интересующего его химического соединения или найти их в справочнике, 
то сегодня это немыслимо: исследовано громадное число различных химических веществ, 
описания которых заняли бы сотни томов. Найти описание конкретного вещества в этих 
томах еще можно, но найти описание вещества, обладающего заданными свойствами, или 
решить какую-нибудь другую задачу поиска нужной нам информации вручную уже не-
возможно. На помощь приходят компьютеры. С их помощью можно создать специальным 
образом организованное хранилище информации, так называемую «базу данных», содер-
жащую сведения об известных к настоящему времени химических веществах. После орга-
низации «базы данных» компьютер может работать в качестве так называемой информа-
ционно-поисковой системы. Эта система способна практически мгновенно ответить хи-
мику на интересующие его вопросы: известно ли данное химическое вещество, какими 
свойствами оно обладает, какие другие химические вещества по свойствам наиболее 
близки к данному и т. д. 

Информационно-поисковые системы находят широкое применение во многих облас-
тях науки. Например, они интенсивно используются в молекулярной биохимии при анали-
зе структур генов, входящих в ДНК. 

Выше мы уже говорили о системах автоматизированного проектирования, много-
кратно повышающих производительность труда конструктора. Но после успешного окон-
чания проектирования детали ее нужно еще изготовить. Процесс изготовления деталей на 
станках также можно автоматизировать с помощью ЭВМ. Станок, управляемый ЭВМ, на-
зывается станком с числовым программным управлением (ЧПУ). Для того чтобы обрабо-
тать деталь на станке с ЧПУ, человек должен прежде всего написать программу обработки 
этой детали, т. е. описать последовательность элементарных операций, в результате вы-
полнения которых деталь будет обработана. После того как эта программа будет написана 
и введена в память ЭВМ, станок с ЧПУ может обработать деталь автоматически, без уча-
стия человека. По одной и той же программе можно обработать серию одинаковых дета-
лей. Для перехода к обработке другой детали нужно будет лишь сменить программу в па-
мяти ЭВМ, управляющей станком. 

В наше время значительная часть предназначенной для человека информации созда-
ется, передается и воспринимается в виде текстов. Тексты обычно пишутся или печатают-
ся на бумаге, таковы книги, газеты, ваши классные и домашние задания, письма, деловая 
документация и т. д. Работы по составлению, написанию и оформлению текстов весьма 
трудоемки. Хорошо подготовленный и оформленный текст легко воспринимается челове-
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ком, плохо подготовленный текст трудно понять. ЭВМ успешно используются для подго-
товки и корректирования (оформления) текстов. Стоит ввести  текст в  память ЭВМ, и. 
дальше исправление опечаток, деление на страницы, многократную перепечатку текста, 
составление указателей ЭВМ может взять на себя. Круг задач по обработке текстов, кото-
рые ЭВМ может помочь решить, весьма велик. Применение ЭВМ в этой области сущест-
венно повышает производительность труда. 

Работа ЭВМ может происходить без непосредственного контакта с человеком. Спе-
циальные компьютеры — микропроцессоры могут встраиваться в самое различное обору-
дование и заменять человека при управлении этим оборудованием. Такой микропроцессор 
может, например, автоматически переключать скорости при движении автомобиля и вы-
бирать наиболее экономичный режим работы двигателя. 

Компьютер может быть соединен с другими компьютерами, тогда они образуют сеть 
ЭВМ. Такая сеть может охватывать компьютеры в одном здании, а может связывать ком-
пьютер с компьютерами других городов. Сети ЭВМ позволяют использовать информа-
цию, накопленную в одном месте, сразу во многих местах, где она нужна. 

 

 
 
Прогресс в развитии ЭВМ сегодня привел к появлению новых ЭВМ — персональных 

компьютеров (рис. 8). Такие компьютеры помогут врачу поставить диагноз, школьнику 
выполнить уроки, учителю проверить домашние работы учащихся, архитектору спроекти-
ровать новые дома. Присоединенные к компьютерной сети персональные ЭВМ свяжут 
человека со справочными службами  и библиотеками,  позволяя  ему быстро  получить 
нужные сведения. 

Поручая компьютерам механическую, рутинную работу, мы освобождаем человека 
для творческой деятельности. Для того чтобы ЭВМ могли решать нужные задачи, люди 
должны постоянно передавать компьютерам свои знания в виде точной информации, 
строгих правил, безошибочных алгоритмов и эффективных программ. Вот почему знание 
основ информатики и вычислительной техники, понимание их роли в жизни общества, 
деятельности людей становятся элементом человеческой культуры, составной частью об-
щего образования, учебным предметом. 
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ПЕРВОНАЧАЛЬНЫЕ СВЕДЕНИЯ ОБ ЭВМ 
Огромное разнообразие областей применения вычислительной техники потребовало 

создания ЭВМ разных типов — больших и малых, универсальных и специализированных. 
Любая ЭВМ — сложнейшая техническая система, состоящая из миллионов и даже 

сотен миллионов простейших устройств — элементов. При создании современных вычис-
лительных машин используется технология, опирающаяся на последние достижения мно-
гих отраслей науки и техники — информатики, математики, физики, химии, а также мате-
риаловедения, микроэлектроники и др. 

Несмотря на разницу в размерах, внешнем виде, выполняемых функциях, различные 
ЭВМ имеют общую структуру и принципы работы. Эти принципы достаточно просты. 
Для того чтобы понять их, нужно познакомиться с назначением памяти, процессора и уст-
ройств ввода и вывода информации — основных компонентов, из которых состоит любая 
ЭВМ (рис. 9). 

 
 

 
 
 
 
Форма представления информации в ЭВМ. Сначала познакомимся с тем, в какой 

форме представляется информация в ЭВМ. ЭВМ может «хранить» и обрабатывать ин-
формацию в виде комбинации электрических сигналов двух типов, которые принято обо-
значать цифрами 0 и 1. 

Любая информация представляется в ЭВМ последовательностью этих двух цифр 0 и 
1, такие последовательности называются двоичными кодами. В большинстве ЭВМ один 
символ (т. е. буква, цифра, знак препинания или специальный знак §,.%.. и т. д.) записыва-
ется кодом из 8 цифр (такой код называется восьмиразрядным). Например, буква А коди-
руется как 01000001, а буква М — как 01001101. 

Используя двоичные коды, можно закодировать (записать с помощью кода) любую 
информацию. Скажем, слово мама кодируется последовательностью из 32 цифр: 

01001101 01000001 01001101 01000001. 

Поскольку многие важнейшие применения ЭВМ связаны с обработкой числовой ин-
формации, то и числа кодируются последовательностями двоичных цифр, например число 
1985—последовательностью из 16 цифр: 

0000 0111 1100 0001 

Изображение, которое мы видим на экране телевизора, также может быть закодиро-
вано последовательностью нулей и единиц, состоящей из сотен тысяч и даже миллионов 
цифр. Любое преобразование информации внутри ЭВМ сводится к работе с двоичными 
кодами. 

Для измерения количества информации используется единица измерения бит. Один 
бит — это количество информации, содержащееся в сообщении типа «да — нет» (0 или 1 
в двоичном коде). Восемь бит образуют более крупную единицу информации — байт. 

Память ЭВМ состоит из отдельных ячеек памяти. В большинстве ЭВМ каждая такая 
ячейка способна хранить один байт информации. Для измерения объема памяти ЭВМ байт 
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— слишком мелкая единица, практичнее использовать производные единицы — килобайт 
(1 килобайт = 210 байт=1024 байт), мегабайт (1 мегабайт = 210 килобайт) и гигабайт (1 ги-
габайт = 210 мегабайт). Эти производные единицы обозначаются кбайт, Мбайт и Гбайт со-
ответственно. 

Программный принцип работы ЭВМ. Процессор — центральное устройство ЭВМ, 
обрабатывающее информацию. Процессор может выполнять фиксированный набор опе-
раций над информацией, хранящейся в памяти ЭВМ. Каков этот набор, определяется уст-
ройством процессора. Количество таких операций не очень велико. Среди них арифмети-
ческие действия (сложение, умножение, вычитание, деление) над числами, содержащими-
ся в памяти, перемещение информации из одной ячейки памяти в другую и др. 

Работа ЭВМ состоит в выполнении процессором заданной последовательности опе-
раций. Это выполнение происходит под управлением программы. Программа состоит из 
отдельных команд, предписывающих процессору выполнить то или иное действие над 
информацией, хранящейся в памяти. В этом и состоит программный принцип работы 
ЭВМ. 

В каждой команде указывается, где именно в памяти находится нужная информация, 
какую именно следует выполнить операцию, в какое место памяти нужно поместить ре-
зультат операции. 

Важнейшими особенностями работы ЭВМ являются следующие: 
1. Решение задачи по заданной программе происходит автоматически, без вмеша-

тельства человека. 
2. Программа записывается в память машины и может быть заменена на другую про-

грамму. 
Итак, задача процессора состоит в выполнении операций, задача памяти — в хране-

нии обрабатываемой процессором информации и программы работы ЭВМ. 
Устройства ввода-вывода. Информация, обрабатываемая процессором и хранящая-

ся в памяти, в некоторый момент должна быть помещена или, как говорят, введена в па-
мять. Результаты работы ЭВМ должны быть переданы человеку (другой ЭВМ, управляе-
мому станку и т. д.), другими Словами — выведены. Эти операции осуществляются уст-
ройствами ввода-вывода. 

Основным устройством ввода, используемым человеком, является клавиатура (ана-
логичная клавиатуре пишущей машинки, кассового аппарата и калькулятора). На клавиа-
туре имеются буквы русского и латинского алфавитов, цифры, знаки препинания и специ-
альные символы. В память ЭВМ они передаются закодированными с помощью электриче-
ских сигналов так, как это объяснялось выше. 

Основным устройством вывода информации для непосредственного восприятия ее 
человеком является дисплей — телевизионный экран, на котором изображаются буквы, 
цифры и другие символы, имеющиеся на клавиатуре. Если этим возможности дисплея ог-
раничиваются, то он называется алфавитно-цифровым (так как основными символами 
клавиатуры являются символы алфавита и цифры). Если на дисплее (используя соответст-
вующие программы) можно, кроме того, получать различные геометрические изображе-
ния, то дисплей называется графическим. 

Помимо получения изображений на экране дисплея, ЭВМ позволяет получать их на 
бумаге. Если требуется вывод алфавитно-цифровой информации, то это делается с помо-
щью алфавитно-цифрового печатающего устройства (АЦПУ). Если требуется вывод гра-
фической информации (см. рис. 2, 6, 10), это делается с помощью графопостроителя или 
других устройств 
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Виды памяти ЭВМ. Выполнение каждой операции процессором требует опреде-

ленного времени, для чтения информации из памяти и ее записи в память также требуется 
определенное время. Имеются различные виды памяти ЭВМ, основанные на различных 
принципах. При этом память с быстрым чтением и записью информации оказывается бо-
лее дорогой, а память с медленным чтением и записью можно сделать более дешевой и 
большего объема. 

В современных ЭВМ разные виды памяти применяются одновременно. Это связано 
со следующим. Чтобы обеспечить бесперебойную работу процессора, нужно, чтобы время 
чтения требуемой информации из памяти было не больше, чем время выполнения опера-
ции. Таким образом, в состав ЭВМ должна входить быстрая память. Такую память назы-
вают также оперативной (так как процессор обращается к ней постоянно в ходе выполне-
ния своих операций) или внутренней (так как она непосредственно связана с процессо-
ром). 

С другой стороны, если о некоторой информации заранее известно, что она долго не 
понадобится, ее можно поместить в медленную память и лишь при необходимости пере-
писать в оперативную память. Медленную память называют внешней. 

Физические основы работы ЭВМ. Как было сказано выше, обрабатываемая ЭВМ 
информация представляется в виде электрических сигналов. Обработку этих сигналов 
осуществляют электронные устройства, состоящие из тысяч и даже сотен тысяч согла-
сованно работающих элементов. Такие устройства называют микросхемами (приставка 
микро- связана именно с тем, что очень большое число элементов размещается в неболь-
шой схеме). Микросхема может представлять собой целый процессор (например, микро-
процессор из числа тех, о которых говорилось выше). Если же все необходимые элементы 
процессора не удается поместить в одну микросхему, то несколько микросхем помещают 
на одну плату — пластмассовую пластинку с металлическими проводниками на ней, со-
единяющими микросхемы (рис. 11). 
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На такой же плате располагаются микросхемы, образующие внутреннюю память 

ЭВМ. Эти микросхемы напоминают микросхемы процессора и работают на тех же физи-
ческих принципах (о них вы узнаете из курса физики). 

Внешняя память ЭВМ устроена совсем иначе. Самым распространенным сейчас ви-
дом этой памяти является магнитная. В ней информация кодируется не электрическим 
сигналом, а намагниченностью частички вещества. 

В качестве примера внешней памяти рассмотрим гибкие диски. Такой диск по разме-
рам близок к гибкой грампластинке. На нем может быть записано до 0,5 Мбайт информа-
ции. Для записи и чтения информации гибкий диск помещают в устройство, называемое 
дисководом. 

Основные характеристики современных ЭВМ. Вы знаете, что компьютеры воз-
никли совсем недавно и развиваются очень быстро. Прогресс в этом развитии связан с 
достижениями информатики, усовершенствованием технологии производства и открыти-
ем новых физических принципов работы элементов компьютера, прежде всего элементов 
процессора. В соответствии с этим выделяют четыре поколения ЭВМ. В ЭВМ первого по-
коления (40—50-е гг.) использовались электронные лампы — те самые, которые сейчас 
употребляются в некоторых телевизорах. В ЭВМ второго поколения (50—60-е гг.) ис-
пользовались транзисторы. Третье поколение ЭВМ (60—70-е гг.) уже содержало микро-
схемы, но небольшие, заменявшие десяток — сотню транзисторов. В теперешнем, четвер-
том поколении (с середины 70-х гг.) используются намного более сложные микросхемы, 
называемые, также большими интегральными схемами. Эволюцию ЭВМ можно проиллю-
стрировать следующей приблизительной схемой (рис. 12). 
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Конечно, поколения ЭВМ различаются не только тем, из каких электронных деталей 

они сделаны (элементной базой), но и тем, как организована их работа (архитектурой) и 
какие есть для них программы  (программным обеспечением). 

В заключение приведем основные технические характеристики современных ЭВМ: 
быстродействие от сотен тысяч до сотен миллионов операций в 1 с, внутренняя память от 
десятков кбайт до десятков Мбайт, внешняя память от сотен кбайт до сотен Гбайт. 

Вопро сы  
1. Какие области применения ЭВМ вам известны? 
2. Приведите несколько примеров задач, для решения которых, по вашему мнению, 

была бы полезна ЭВМ. 

Упражнения  
1. Заметьте, сколько времени вам понадобится, чтобы подсчитать число букв «а» в 

первых 10 строках страницы, которую вы читаете. Чтобы безошибочно подсчитать коли-
чество букв «а» в тексте учебника, компьютеру понадобилось бы около 10 с. Во сколько 
раз это быстрее того, что вы могли бы сделать вручную без ЭВМ? 

2. Предположим, что компьютер выполняет 100 000 операций в 1 с и потребляет 
мощность 100 Вт. Сколько операций можно сделать за 1 р.?  (Цена 1 кВт/ч электроэнергии 
равна 4 к.) 

3. На диске объемом 100 Мбайт подготовлена к выдаче на экран дисплея инфор-
мация: 24 строчки по 80 символов, эта информация заполняет экран целиком. Какую часть 
диска она занимает? 

4. Придумайте эксперимент, позволяющий узнать, сколько символов в 1 с вы чи-
таете, пишите, произносите. Проведите этот эксперимент. 

5. Текст, который вы произносите, вводится в память ЭВМ объемом 64 кбайт. Че-
рез сколько минут память будет полностью заполнена? 

6. Оцените, сколько школьных сочинений среднего размера можно уместить на 
гибком диске емкостью 500 кбайт. 

7. Печатающее устройство печатает 100 символов в 1 с. Сколько времени будет 
печататься страница, которую вы сейчас читаете? 

8. Пусть в некотором компьютере расстояние между процессором и памятью рав-
но 30 см, а каждое выполнение операции требует передачи информации от процессора к 
памяти и обратно. Покажите, что такой компьютер не может работать с быстродействием 
600 млн. операций в секунду. 
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Ра з д е л  I  
АЛГОРИТМЫ. 

АЛГОРИТМИЧЕСКИЙ ЯЗЫК 

§ 1. АЛГОРИТМ И ЕГО СВОЙСТВА 
Любой человек ежедневно встречается с множеством задач от самых простых и хо-

рошо известных до очень сложных. Для многих задач существуют определенные правила 
(инструкции, предписания), объясняющие исполнителю, как решать данную задачу. Эти 
правила человек может изучить заранее или сформулировать сам в процессе решения за-
дачи. Чем точнее и понятнее будут описаны правила решения задач, тем быстрее человек 
овладеет ими и будет эффективнее их применять. 

Решение многих задач человек может передавать техническим устройствам — авто-
матам, электронным вычислительным машинам, роботам. Применение таких технических 
устройств предъявляет очень строгие требования к точности описания правил и после-
довательности выполнения действий. Поэтому разрабатываются специальные языки для 
четкого и строгого описания различных правил. Это одна из задач информатики. 

1. ПОНЯТИЕ АЛГОРИТМА 
Под алгоритмом понимают понятное и точное предписание (указание) исполнителю 

совершить последовательность действий, направленных на достижение указанной цели 
или на решение поставленной задачи. 

Слово алгоритм происходит от algorithmi — латинской формы написания имени ве-
ликого математика IX в. аль-Хорезми, который сформулировал правила выполнения 
арифметических действий. Первоначально под алгоритмами и понимали только правила 
выполнения четырех арифметических действий над многозначными числами. В дальней-
шем это понятие стали использовать вообще для обозначения последовательности дейст-
вий, приводящих к решению поставленной задачи. 

Рассмотрим примеры. 
Пример 1.1. Вычислить значения у по формуле 

у = (Ах + В)(Сх − D) для любого значения х. 

Чтобы решить эту задачу, достаточно выполнить последовательность следующих 
действий: 

1) умножить А на х, результат обозначить R1; 
2) R1 сложить с В, результат обозначить R2; 
3) умножить С на х, результат обозначить R3; 
4) из R3 вычесть D, результат обозначить R4; 
5) умножить R2 на R4, считать результат значением у. 
Это предписание является алгоритмом решения поставленной задачи. Для человека, 

выполняющего действия, уже необязательно знать исходную формулу для вычисления 
значения у. Ему нужно всего лишь строго следовать указанному предписанию, исполняя 
его пункт за пунктом. 

В приведенном примере процесс решения задачи расчленяется на элементарные опе-
рации, арифметические действия, но это членение может быть продолжено и дальше. На-
пример, п. 2 этого алгоритма — сложение чисел R1 и В — можно развернуть в систему 
правил, описывающих процесс сложения двух чисел столбиком. Принцип расчленения 
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сложного процесса решения задачи на элементарные действия имеет важное значение для 
построения алгоритмов. 

Пример 1.2. Найти наибольший общий делитель двух натуральных чисел m и n. 
Составим алгоритм решения этой задачи, основанный на том свойстве, что если m>n, 

то наибольший общий делитель чисел т, п такой же, как и чисел т − п, п. 
Алгоритм будет таким: 

1) если числа равны, то взять любое из них в качестве ответа, в  противном случае 
продолжить выполнение алгоритма; 

2) определить большее из чисел; 
3) заменить большее число разностью большего и меньшего чисел; 
4) начать алгоритм сначала. 
Как видно, этот алгоритм, известный под названием алгоритма Евклида, также со-

стоит из отдельных пунктов, предписывающих исполнителю выполнить некоторое про-
стое действие. Его особенностью является то, что все действия, указанные в алгоритме, 
могут повторяться многократно. 

В принципе необходимость вернуться к началу алгоритма может привести к беско-
нечному повторению пунктов алгоритма. В данном случае этого не произойдет, потому 
что величина разности большего и меньшего чисел с каждым новым вычитанием умень-
шается, и поэтому после некоторого числа повторений сравниваемые числа обязательно 
станут равными. Алгоритм применим к любым натуральным числам и всегда приводит к 
решению задачи. 

С помощью алгоритмов можно решать не только вычислительные, но и многие дру-
гие задачи. Приведем пример алгоритма решения графической задачи. 

 
 
Пример 1.3. Построить график функции у = а |х| при а > 0. Алгоритм построения 

имеет следующий вид (рис. 13): 
1) начертить график функции у = ах; 
2) стереть часть графика левее оси ординат; 
3) имметрично отразить оставшуюся часть графика относительно оси ординат. 
Пример 1.4. Игра Баше.  (В игре участвуют двое.) Рассмотрим частный случай игры. 

Имеется 15 предметов. Соперники ходят по очереди, за каждый ход любой из играющих 
может взять 1, 2 или 3 предмета. Проигрывает тот, кто вынужден взять последний пред-
мет. 

Алгоритм выигрыша для первого игрока имеет следующий вид: 
1) взять два предмета; 
2) второй и последующие ходы делать так, чтобы количество предметов, взятых вместе 

с соперником за очередной ход, в сумме составляло 4. 
Данный алгоритм приводит к выигрышу для 7, 11, 15, 19, ... предметов. 
Человек, пользующийся данным алгоритмом, всегда будет выигрывать в этой игре. 

Ему совершенно необязательно знать, почему надо поступать именно так, а не иначе. Для 
успешной игры от него требуется только строго следовать алгоритму. 
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Примеры алгоритмов показывают, что запись алгоритма распадается на отдельные 
указания исполнителю выполнить некоторое законченное действие. Каждое тако'е указа-
ние называется командой. Команды алгоритма выполняются одна за другой. На каждом 
шаге исполнения алгоритма исполнителю точно известно, какая команда должна выпол-
няться следующей. 

Поочередное выполнение команд алгоритма за конечное число шагов приводит к 
решению задачи, к достижению цели. 

Каждый алгоритм строится в расчете на некоторого исполнителя. Для того чтобы 
исполнитель мог решить задачу по заданному алгоритму, необходимо, чтобы он был в со-
стоянии выполнить каждое действие, предписываемое командами алгоритма. 

Совокупность команд, которые могут быть выполнены исполнителем, называется 
системой команд исполнителя. 

Алгоритм должен быть понятным исполнителю, т. е. каждая его команда должна 
входить в систему команд исполнителя. 

Таким образом, для правильного построения алгоритма необходимо знать систему 
команд исполнителя и быть уверенным, что исполнение алгоритма всегда завершится за 
конечное число шагов. 

2. ФОРМАЛЬНОЕ ИСПОЛНЕНИЕ АЛГОРИТМА 
Пример 2.1. Построить алгоритм нахождения середины отрезка при помощи циркуля 

и линейки. Алгоритм деления отрезка АВ пополам: 
1) поставить ножку циркуля в точку А; 
2) установить раствор  циркуля  равным  длине отрезка АВ; 
3) провести окружность; 
4) поставить ножку циркуля в точку В; 
5) провести окружность; 
6) через точки пересечения окружностей провести прямую; 
7) отметить точку пересечения этой прямой с отрезком АВ. Каждая его команда указы-

вает исполнителю одно конкретное законченное действие, и исполнитель должен 
выполнить его целиком. Исполнитель не может перейти к выполнению следующей 
команды, не закончив полностью выполнения предыдущей. Команды алгоритма на-
до выполнять последовательно одну за другой, в соответствии с указанным поряд-
ком их записи. Выполнение всех команд гарантирует правильное решение задачи. 
Данный алгоритм будет понятен исполнителю, умеющему работать с циркулем и 
знающему, что такое поставить ножку циркуля, провести окружность и т. д. Для 
ученика I класса этот алгоритм не понятен, а для ученика IX класса понятен. 
Пример 2.2. Алгоритм «отгадывания» задуманного числа. 
Пусть кто-либо задумает произвольное натуральное число. Ему предлагается произ-

вести с этим числом следующие действия и затем сообщить результат: 
1) умножить задуманное число на 5; 
2) прибавить 8; 
3) сумму умножить на 2. 
Необходимо по результату «отгадать» задуманное число. 
Решение данной задачи сводится к решению уравнения (x · 5 + 8) · 2 = а, где х — не-

известное задуманное число, а — полученный результат. 
«Отгадывание» х можно поручить исполнителю, совершенно незнакомому с содер-

жанием задачи. Для этого достаточно сообщить ему следующий алгоритм: 
1) вычесть из результата 16; 
2) в полученной разности отбросить крайнюю правую цифру, полученное число и бу-

дет искомым. 
Исполняя алгоритм, исполнитель может не вникать в смысл того, что он делает, и 

вместе с тем получать нужный результат. 
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В таком случае говорят, что исполнитель действует формально, т. е. отвлекается от 
содержания поставленной задачи и только строго выполняет некоторые правила, инструк-
ции. 

Это очень важная особенность алгоритмов. Наличие алгоритма формализовало про-
цесс «отгадывания» задуманного числа, исключило рассуждения. Если обратиться к алго-
ритмам, которые мы рассматривали ранее, то можно увидеть, что и они позволяют испол-
нителю действовать формально. Таким образом, создание алгоритма дает возможность 
решать задачу формально, механически исполняя команды алгоритма в указанной после-
довательности. 

Построение алгоритма для решения задачи из какой-либо области требует от челове-
ка глубоких знаний в этой области, бывает связано с тщательным анализом поставленной 
задачи, сложными, иногда очень громоздкими рассуждениями. На поиски алгоритма ре-
шения некоторых задач ученые затрачивают многие годы. Но когда алгоритм создан, ре-
шение задачи по готовому алгоритму уже не требует каких-либо рассуждений и сводится 
только к строгому выполнению команд алгоритма. 

В этом случае исполнение алгоритма можно поручить не человеку, а машине. Дейст-
вительно, простейшие операции, на которые при создании алгоритма расчленяется про-
цесс решения задачи, может реализовать и машина, специально созданная для выполнения 
отдельных команд алгоритма и выполняющая их в последовательности, указанной в алго-
ритме. Это положение и лежит в основе работы автоматических устройств. 

Вопро сы  
1. Приведите примеры известных вам алгоритмов. 
2. Что понимается под командой алгоритма? 
3. Что называется системой команд исполнителя? Поясните на примере. 
4. Могут ли автоматические устройства быть исполнителями алгоритмов? 

Упражнения  
1. Сформулируйте и запишите алгоритм вычисления значения у по формуле: 

.
4)3(

)3(2б)        );57)(32(a) 2

2

+−
−−

=−+=
x

xyxxy  

2. По приведенному алгоритму восстановите формулу для вычисления значения у: 
a) 1) умножить х на х, обозначить результат R1; 

2) умножить R1 на а, обозначить результат R2; 
3)  сложить R2 с b, обозначить результат R3; 
4) разделить R3 на с, считать результат значением у; 

 

 
 
б) 1) сложить х с 1, обозначить результат А1; 

2) разделить 1 на А1, обозначить результат А2; 
3) сложить А2 с 1, обозначить результат А3; 
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4) вычесть из А2 единицу, обозначить результат А4; 
5) разделить А4 на А3, обозначить результат А5; 
5) вычесть из А5 единицу, считать результат значением у. 
 

3. Сформулируйте и запишите алгоритмы построения с помощью циркуля и ли-
нейки: 

а) серединного перпендикуляра данного отрезка; 
б) окружности, для которой данный отрезок — диаметр; 
в) биссектрисы угла; 
г) точки пересечения медиан данного треугольника; 
д) перпендикуляра к прямой, проходящего через точку, принадлежащую прямой. 

4. Двое играют в игру Баше с 20 предметами. Начинающий игрок действует по ал-
горитму 1.4. Может ли второй игрок у него выиграть? 

5. Преобразуйте алгоритм так, чтобы его мог исполнить ученик II класса, не 
знающий действий возведения в квадрат и в куб: 

1) возвести х в квадрат, результат обозначить а1; 
2) умножить а1 на 2, результат обозначить а2; 
3) сложить а2 и 15, результат обозначить а3; 
4) возвести а3 в куб, результат обозначить а4; 
5) сложить а4 и 25, результат обозначить а5; 
6) разделить а3 на а5, считать результат значением у, 

6. Человек находится в лабиринте (рис. 14) и начинает двигаться в направлении, 
указанном стрелкой, согласно следующему предписанию: иди шаг за шагом, не 
отрывая руки от правой стены. Шагай, пока не выйдешь из лабиринта. 
а) Достигает ли данное предписание цели вывести исполнителя из лабиринта? 
б) Нарисуйте путь исполнителя этого предписания. 

7. Сколько раз будет выполняться шаг 3 алгоритма Евклида для т = 100, п = 18? 

§ 2. АЛГОРИТМИЧЕСКИЙ ЯЗЫК 
Алгоритмический язык — это система обозначений и правил для единообразной и 

точной записи алгоритмов и их исполнения. Алгоритмический язык, с одной стороны, 
близок к обычному языку. Алгоритмы на этом языке могут записываться и читаться как 
обычный текст. С другой стороны, алгоритмический язык включает в себя и математиче-
скую символику: числа, обозначения величин и функций, знаки операций и скобки и др. 

Правила алгоритмического языка лежат в основе языков программирования для 
ЭВМ. Изучение алгоритмического языка поможет вам в будущем освоить любой язык 
программирования для ЭВМ. 

3. ОБЩИЕ ПРАВИЛА АЛГОРИТМИЧЕСКОГО ЯЗЫКА 
Как и каждый язык, алгоритмический язык имеет свой словарь. Основу этого словаря 

составляют слова, употребляемые для записи команд, входящих в систему команд испол-
нителя того или иного алгоритма. Такие команды называются простыми командами. 

Обычно простая команда выглядит как повелительное предложение русского языка в 
полной или сокращенной форме, включая, если необходимо, формулы и другие символи-
ческие обозначения. 

Кроме того, в алгоритмическом языке используется некоторое ограниченное число 
слов, смысл и способ употребления которых задан раз и навсегда. Эти слова называются 
служебными словами. При записи алгоритмов они выделяются и записываются, как пра-
вило, в сокращенной форме. Использование служебных слов делает запись алгоритма бо-
лее наглядной, а форму представления различных алгоритмов — единообразной. 
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Алгоритм, записанный на алгоритмическом языке, должен иметь название. Название 
выбирается так, чтобы было ясно, решение какой задачи описывает данный алгоритм. Для 
выделения названия алгоритма перед ним записывается служебное слово алг (алгоритм). 

За названием алгоритма (обычно с новой строки) записываются его команды. Для 
указания начала и конца алгоритма его команды заключаются в пару служебных слов нач 
(начало) и кон (конец). Команды записываются последовательно. При записи одной ко-
манды можно перейти на другую строчку. Если несколько команд записываются на одной 
строчке, то они разделяются точкой с запятой (;). 

Последовательность нескольких команд алгоритма, выполняющихся одна за другой, 
называется серией. Серия может состоять и из одной команды. 

Итак, общий вид алгоритма, записанного на алгоритмическом языке, таков: 

алг название алгоритма 
нач 

команды алгоритма (серия) 
кон 

Пример 3.1. Записать на алгоритмическом языке алгоритм нахождения середины от-
резка (с. 20), если в систему команд исполнителя входят привычные действия с циркулем 
и линейкой. 
алг деление отрезка АВ пополам 
нач 

поставить ножку циркуля в точку А 
установить раствор циркуля равным длине отрезка АВ 
провести окружность поставить ножку циркуля в точку В 
провести окружность 
через точки пересечения окружностей провести прямую 
отметить точку пересечения этой прямой с отрезком АВ 

кон 
Пример 3.2. Записать на алгоритмическом языке инструкцию по использованию ме-

ждугородного телефона-автомата: 
Снимите трубку. Опустите монету 15 к. Услышав непрерывный сигнал, наберите код 

нужного вам города, а затем сразу нужный номер. Услышав ответ абонента, нажмите 
кнопку «Разговор». 
алг использование междугородного телефона-автомата 
нач 
 снять трубку 
 опустить монету 15 к. 
 дождаться появления непрерывного сигнала 
 набрать код нужного вам города 
 набрать номер нужного вам телефона 
 дождаться ответа абонента 
 нажать кнопку «Разговор» 
 говорить 
кон 

4. СОСТАВНЫЕ КОМАНДЫ 
Некоторые типы алгоритмов: линейные, разветвляющиеся и циклические уже встре-

чались вам в курсе алгебры. 
В алгоритмическом языке линейными являются алгоритмы, состоящие из одной се-

рии простых команд. Для записи разветвляющихся и циклических алгоритмов в алгорит-
мическом языке используются так называемые составные команды, аналогичные слож-
ным предложениям русского языка. 
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В алгоритмическом языке употребляются две основные составные команды: команда 
ветвления и команда повторения (цикла). Каждая из этих двух команд отличается от про-
стых тем, что в нее входит условие, в зависимости от которого выполняются или не вы-
полняются команды из числа входящих в составную. 

1. Команда ветвления записывается следующим образом: 
если условие 
 то серия 1 
 иначе серия 2 
все 

В зависимости от условия выполняется только одна из двух серий команд, входящих 
в команду ветвления. Если условие соблюдено, то надо выполнить серию 1, а если нет — 
серию 2. 

Команда ветвления используется и в сокращенной форме: 

если условие 
то серия 

все 
В этом случае, если условие соблюдено, исполнитель выполняет серию команд, сле-

дующую в записи алгоритма за служебным словом то, а в противном случае, пропуская 
серию, переходит к выполнению команды, следующей за командой ветвления (после слу-
жебного слова все). 

Команды из каждой серии выполняются подряд, каждая по своим правилам. Коман-
да ветвления заканчивается, как только выполнится последняя команда из серии 1 или се-
рии 2. 

В качестве условия в команде ветвления может быть использовано любое понятное 
исполнителю утверждение, которое может соблюдаться или не соблюдаться. Утверждение 
может быть выражено словами или формулой. 

Читается команда ветвления так же, как и записывается. 
При изображении алгоритмов в виде схем условие можно понимать как вопрос, на 

который возможен ответ «да» или «нет». 
На рисунке 15 изображены схемы для полной и сокращенной формы записи команды 

ветвления. 

 
 
Проиллюстрируем на примерах употребление команды ветвления. 
Пример 4.1. Записать алгоритм правописания приставок на «з»  («с»). 

алг правописание приставок на «з» («с») 
нач 
 если корень слова начинается со звонкой согласной 
 то на конце приставки написать «з» 
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 иначе на конце приставки написать «с» 
все 

кон 
Пример 4.2. Нужно включить электроприбор, имеющий переключатель напряжения, 

в сеть 220 В. 
алг включение электроприбора в сеть 220 В 
нач 
 если переключатель прибора установлен на 127 В 
  то установить переключатель прибора на 220 В 

все 
вставить вилку в розетку 

кон 
Пример 4.3. Определить кислотность раствора. Чтобы решить эту задачу, достаточно 

опустить в раствор лакмусовую бумажку и по ее цвету определить, является ли раствор 
кислотным, щелочным или нейтральным. 
алг определение кислотности раствора 
нач отлить в пробирку 1 мл раствора 
 опустить в пробирку лакмусовую бумажку 
 если бумажка красная 

то ответ: раствор кислотный 
иначе если бумажка синяя 

 то ответ: раствор щелочной 
 иначе ответ: раствор нейтральный 

все 
все 

кон 
Схема алгоритма приведена на рисунке 16. 
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2. Команда повторения. В своей практической деятельности человек постоянно встре-

чается с задачами, для решения которых требуется многократно повторять одни и те же 
действия. Именно для этого применяется составная команда повторения  (цикл). 

Команда повторения имеет особое значение для построения алгоритмов, исполняе-
мых на ЭВМ, так как только ее использование позволяет с помощью сравнительно корот-
ких алгоритмов записывать предписания о совершении очень длинной последова-
тельности действий, для которых требуется высокая скорость ЭВМ. 

Команда повторения записывается следующим образом: 
пока условие 
нц 

серия 
кц 

Выполнение этой команды приводит к тому, что указанная в ней серия команд вы-
полняется несколько раз подряд. Она выполняется столько раз, сколько нужно для того, 
чтобы указанное условие перестало соблюдаться. 

Если условие не соблюдается с самого начала, то серия не выполняется ни разу. Ус-
ловие цикла проверяется перед выполнением серии, но не в процессе ее выполнения. 

Выполнение команды цикла можно пояснить графически в виде схемы (рис. 17), 
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Поясним особенности выполнения этой команды на следующих примерах. 

Пример 4.4. Пусть у исполнителя имеется пустое 7-литровое ведро, которое надо на-
полнить до краев теплой водой, выполняя следующие команды: 
пока ведро не полно 
нц 
 долить 1 л холодной воды 
 долить 1 л горячей воды 
кц 

Выполняя эту составную команду, исполнитель трижды дольет в ведро по 2 л, так 
как между служебными словами нц и кц стоят две команды: «долить 1 л». После этого, 
поскольку ведро еще не будет полным, он выполнит серию еще раз. При этом 1 л воды 
выльется из ведра. 

Пример 4.5. Записать на алгоритмическом языке выигрышный алгоритм игры Баше, 
если имеется 15 предметов (см. пример 1.4). 
алг игра Баше 
нач 

взять два предмета 
пока осталось больше четырех предметов 
нц 

дать противнику сделать ход 
запомнить число К взятых противником предметов 
взять 4 — К предметов 

кц 
дать противнику сделать ход 

кон 
Пример 4.6. Используя уже известные команды ветвления и повторения, составить 

более сложный алгоритм — нахождения массы небольшого предмета с помощью чашеч-
ных весов. 
алг определение массы предмета 
нач 

положить на левую чашку весов исследуемый предмет 
положить на правую чашку весов гирьку 10 г 
пока чашки не уравновешены 
нц если перевесила левая чашка 
 то добавить на правую чашку еще одну гирьку 

  такой же массы, какую положили туда в предыдущий раз 
 иначе снять с правой чашки последнюю положенную на нее гирьку и заме 
 нить ее гирькой в 10 раз меньшей массы  
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 все 
 кц 
  сосчитать суммарную массу гирек на правой чашке с гирьками 
кон 

Вопро сы  
1. Для чего нужен алгоритмический язык? 
2. Какова роль служебных слов алг, нач, кон, если, то, иначе, все, пока, нц, кц? По-

ясните на примерах. 
3. Какие бывают составные команды?  Приведите примеры. 

Упражнения  
1. Запишите алгоритмы из упражнения 3, § 1 на алгоритмическом языке. 
2. Измените алгоритм примера 4.4 так, чтобы вода не проливалась. 
3. Придумайте и запишите выигрышный алгоритм для второго игрока игры Баше для 5 

предметов. 

§ 3. АЛГОРИТМЫ РАБОТЫ С ВЕЛИЧИНАМИ 
Решение большинства практических задач связано с преобразованием информации. 
Так, при решении квадратного уравнения вида ах2 + bх + с = 0 на основании исход-

ной информации (вида уравнения и значений а, b и с) мы получаем новую информацию — 
результат (имеет ли это уравнение корни, и если имеет, то получаем значения корней х1 и 
х2). 

При нахождении середины отрезка АВ мы на основании информации об отрезке АВ 
получаем результат — точку, отмечающую его середину. 

Под терминами «исходная информация», «преобразованная информация», «резуль-
тат» понимаются вполне конкретные величины — числовые (коэффициенты о, b и с), гра-
фические (отрезок) и т. п. 

5. ВЕЛИЧИНЫ 
Величины делятся на переменные и постоянные. Постоянной называется величина, 

значение которой не меняется в процессе исполнения алгоритма, а остается одним и тем 
же, указанным в тексте алгоритма (например, 15; 2,4; 3,14 и т. д.). Переменной называется 
величина, значение которой меняется в процессе исполнения алгоритма. 

При написании алгоритма для переменных величин вводятся обозначения аналогич-
но обозначениям переменных в курсе алгебры. Такое обозначение переменной величины в 
алгоритмическом языке называется именем величины. 

При исполнении алгоритма в каждый момент времени величина обычно имеет неко-
торое значение. Оно называется текущим значением. В процессе исполнения алгоритма 
величина может не получить конкретного значения. Такая величина называется не-
определенной. 

В школьном курсе математики и физики чаще всего встречаются числовые величи-
ны, значениями которых являются натуральные, целые, действительные числа. Однако в 
алгоритмах столь же часто встречаются и нечисловые величины: слова, таблицы, списки, 
тексты, графики, геометрические фигуры и т. д. В курсе математики и физики величины 
чаще всего обозначаются одной буквой латинского или греческого алфавита. Поскольку 
при применении ЭВМ и при записи алгоритмов и программ разнообразие величин очень 
велико, в алгоритмическом языке принято использовать в качестве имен величин произ-
вольные буквы, буквосочетания и любые слова, поясняющие смысл и назначение величи-
ны в алгоритме. 

Для того чтобы отличить имена величин от обычных слов в этом учебнике, имена 
величин будут выделены другим шрифтом — курсивом (например,произведение, число 
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шагов и т. д.). Например, класс 9а в школе является переменной величиной, значение ко-
торой — множество учеников, обучающихся в этом классе в текущем учебном году. 

Величины, значениями которых являются слова или текст, называются литерными. 
Для того чтобы выделить текст, который является значением литерной величины, 

значения литерных величин берутся в кавычки, например „нет решения". 
Как мы видим, величины могут иметь различный тип. Они могут быть натуральны-

ми, целыми, действительными, литерными и т. д. в соответствии с тем, что может быть их 
назначением. Отметим, что в программировании вместо слова «действительный» в при-
менении к числам используется слово «вещественный». Сокращенно типы переменных 
обозначаются словами нат (натуральный), цел (целый), вещ (вещественный), лит (литер-
ный) и т. д. 

6. ЗАГОЛОВОК АЛГОРИТМА 
Запись всякого алгоритма начинается с заголовка. Вот пример заголовка алгоритма 

нахождения остатка от деления двух натуральных чисел: 
алг остаток от деления (нат делимое, нат делитель, нат остаток) 
 арг делимое, делитель 
 рез остаток 

Здесь остаток от деления — название алгоритма, делимое, делитель и остаток — 
имена величин. Перед каждым именем величины указан ее тип. Исходными данными для 
алгоритма нахождения остатка от деления двух натуральных чисел являются величины 
делимое, делитель типа нат, а в результате его выполнения величина остаток приобрета-
ет значение, равное остатку от деления значений величин делимое и делитель. Величины, 
являющиеся исходными данными для алгоритма, называются аргументами. Их список 
помещается после служебного слова арг (аргумент). Результаты алгоритма (в данном 
примере — величина остаток) перечисляются после служебного слова рез (результат). 

Общий вид заголовка алгоритма таков: 
алг название алгоритма (список величин с указанием типов) 
 арг имена аргументов 
 рез имена результатов 

Имена аргументов и результатов алгоритма перечисляются через запятую. 
Пример 6.1. Заголовок алгоритма Евклида: 

алг нахождение наибольшего общего делителя (НОД) (нат М, 
N, нат НОД) 
арг М, N 
рез НОД 

 

7. ПРОМЕЖУТОЧНЫЕ ВЕЛИЧИНЫ. ПРИСВАИВАНИЕ ЗНАЧЕНИЙ 

Пример 7.1. Рассмотрим запись алгоритма работы с величинами на примере алго-
ритма решения квадратного уравнения ах2 – bx + с = 0. 
aлг решение квадратного уравнения  (вещ а, b, с, х1, х2, лит y) 
 apr a, b, с 
 рез x1, х2,у 
нач вещ D 
 D = b2 — 4 · а · с 
 если D < 0 
  то y:= „нет решения" 
  иначе y:= „есть решение" 
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a

Dbx
a

Dbx
2

:;
2

: 21
−−

=
+−

=  

 все 
кон 

Разберем подробно приведенный пример. Значение корней х1 и х2 надо найти при 
конкретных значениях a, b и с. Поэтому переменные a, b и с являются аргументами, а 
корни х1 и х2 — результатом алгоритма. Если корни уравнения не существуют, то алго-
ритм должен выдавать в качестве результата сообщение об отсутствии корней. Для этого 
введена литерная переменная у, значением которой является текст сообщения о том, имеет 
или нет уравнение корни. 

Текст алгоритма начинается с заголовка. 
Затем в тексте алгоритма следуют команды, указывающие, как решать поставленную 

задачу. Но перед ними после знакомого нам служебного слова нач появилось еще одно 
описание типа переменной: вещ D 

Переменная D (дискриминант квадратного уравнения) не является ни аргументом, ни 
результатом алгоритма, а используется только при его выполнении для обозначения вы-
числяемого промежуточного значения. Такие переменные называются промежуточными. 
Их тип также должен быть указан исполнителю, и их описание приводится после служеб-
ного слова нач. 

Далее в записи алгоритма следует команда: 
D:= b2 − 4 · а · с. 

Эта команда читается так: «Присвоить переменной D значение выражения b2 — 4 ·а · 
с». Команда такого вида называется присваиванием. 

Знак присваивания (: = ) делит команду присваивания на левую и правую части. В 
левой части может стоять любая переменная величина алгоритма, а в правой части — лю-
бое числовое или нечисловое выражение. 

Знак «: = » нельзя путать со знаком математического равенства «=». Знак «:==» ука-
зывает исполнителю действие (присвоить переменной вычисленное значение), в то время 
как знак «=» никаких действий не предполагает. 

Далее в тексте алгоритма следует уже известная нам составная команда ветвления, 
содержащая две серии команд. Первая серия  (после служебного слова то) состоит из од-
ной команды присваивания литерной переменной у: = „нет решения". 

Вторая серия (после служебного слова иначе) состоит из трех команд присваивания: 
первая присваивает значение литерной переменной у, две оставшиеся присваивают значе-
ния числовым переменным х1, х2. 

8. ИСПОЛНЕНИЕ АЛГОРИТМА 
Практическая реализация всех предусмотренных алгоритмом действий по получе-

нию результата для конкретных значений аргументов осуществляется в процессе испол-
нения алгоритма. 

Рассмотрим, как происходит исполнение алгоритма решения квадратного уравнения 
(пример 7.1). 

Прежде всего исполнитель составляет таблицу записи значений   используемых в ал-
горитме переменных величин (табл. 1). 

 
                                                                                                                              Таблица 1 

Аргументы Промежуточ-
ная величина Результаты Шаги ал-

горитма a b c D x1 x2 y 

Проверка
условий 
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Такую таблицу мы будем называть таблицей значений. При исполнении алгоритма 
компьютером значения величин хранятся в его памяти. При исполнении алторитма чело-
веком таблица значений выполняет роль дополнительной памяти для исполнителя. 

В данном случае исполнитель получает значения аргументов а, b и с. Пусть, напри-
мер, а = 2, b = 1, с = − 6. Эти данные исполнитель заносит в таблицу (табл. 2). 

Затем он приступает непосредственно к исполнению алгоритма. Алгоритм расчленя-
ется на отдельные команды (для удобства их последовательной регистрации в таблице 
имеется специальная графа «Шаги алгоритма»). 

На первом шаге выполняется команда присваивания 
D:= b2 − 4 · а·  с, 

т. е. исполнитель подставляет в формулу текущие значения входящих в нее переменных, 
производит нужные вычисления и присваивает переменной D значение 49. 

Это значение вносится в таблицу (табл. 2). 
 

                                                                                                                                            Таблица 2 

Аргументы Промежуточ-
ная величина Результаты Шаги ал-

горитма a b c D x1 x2 y 

Проверка 
условий 

 2 1 -6      
         
1    49     
 
На этом первый шаг алгоритма заканчивается, и исполнитель переходит к выполне-

нию команды ветвления. Выполнение этой составной команды состоит из нескольких ша-
гов. 

Вторым шагом алгоритма является проверка условия D < 0 этой команды. Текущим 
значением переменной D, как следует из таблицы, является число 49, поэтому условие D < 
0 в данном случае не соблюдается. Результат проверки условия для контроля заносится в 
соответствующую строку графы «Проверка условий» таблицы, а именно записывается ус-
ловие и за ним слово «да», если условие соблюдено, и «нет» в противном случае (табл. 3). 

Условие не соблюдено, нужно переходить к выполнению серии команд, следующей 
за служебным словом иначе команды ветвления, за этим словом стоит серия из трех ко-
манд присваивания. 

Третий шаг алгоритма — выполнение команды присваивания у:= „есть решение". В 
результате выполнения этого шага исполнитель присваивает переменной у литерное зна-
чение “есть решение" и это значение вносится в таблицу (табл. 3). 

 
                                                                                                                                           Таблица 3 

Аргументы Промежуточ-
ная  величина Результаты Шаги  ал-

горитма a b c D x1 x2 y 

Проверка 
условий 

 2 1 -6      
1    49     
2        49 < 0 (нет) 

3       есть 
решение  

 

Четвертый шаг алгоритма — выполнение команды присваивания .
2

:1 a
Dbx +−

=  Испол-

нитель присваивает переменной х1, значение 5,1
4

491
2

=
+−

=
+−
a

Db  (табл. 4). 
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                                                                                                                                           Таблица 4 

Аргументы Промежуточ-
ная  величина Результаты Шаги алго-

ритма a b c D x1 x2 y 

Проверка 
условий 

 2 1 -6      
1    49     
2        49 < 0 (нет) 

3       есть 
решение  

4     1,5    
 

Пятый шаг алгоритма — выполнение команды присваивания 
a

Dbx
2

:2
−−

=  Исполнитель 

присваивает переменной х2 значение 2
4

491
2

:2 −=
−−

=
−−

=
a

Dbx  (табл. 5). 

После пятого шага закончилось выполнение составной команды ветвления и испол-
нение всего алгоритма. В результате переменные х1, х2 и у получили значения: х2 = − 2, x1, 
= 1,5, у.= „есть решение" (см. табл. 5). 
 

                                                                                                                                           Таблица 5 

Аргументы Промежуточ-
ная  величина Результаты Шаги алго-

ритма a b c D x1 x2 y 

Проверка 
условий 

 2 1 -6      
1    49     
2        49 < 0 (нет) 

3       есть 
решение  

4     1,5    
5      -2   
 
 
Если бы аргументы алгоритма были заданы так, что значение выражения b2 − 4ас 

оказалось бы меньше нуля (например, а = 2, b = − 3, с = 7), то в этом случае исполнение 
закончилось бы за три шага и переменная у получила бы значение „нет решения", а пере-
менные х1 и х2 никаких значений не получили бы (табл. 6). 

 
                                                                                                                                         Таблица 6 

Аргументы Промежуточ-
ная  величина Результаты Шаги алго-

ритма a b c D x1 x2 y 

Проверка 
условий 

 2 -3 7      
1    -47     
2        -47 < 0 (да) 

3       нет ре-
шения  

 
Рассмотрим еще один пример выполнения алгоритма. 
П р и м е р 8.1. Алгоритм Евклида — нахождения наибольшего общего делителя 

двух натуральных чисел М и N. 
алг нахождение наибольшего общего делителя  (нат М, N, нат 
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 НОД) 
 арг М, N 
 рeз НОД 
нач нат х, у 
 х:= М; у:= N 
 пока х ≠ у 
 нц 
 если х > у 
  то х: = х — у 
  иначе у:= у — х 
 все 
 кц 

 НОД: = х 
кон 
В таблице 7 приведено исполнение алгоритма Евклида для М = 35, N = 21. 
 
                                                                                                                                          Таблица 7 

Аргументы Промежуточ-
ная  величина Результат Шаги алго-

ритма M N x y НОД 

Проверка 
условий 

 35 21     
1   35    
2    21   
3      35 ≠ 21(да) 
4      35 > 21(да) 
5   14    
6      14 ≠ 21(да) 
7      14 > 21(нет) 
8    7   
9      14 ≠ 7 (да) 
10      14 > 7 (да) 
11   7    
12      7 ≠ 7 (нет) 
13     7  
 

 

9. ОТНОШЕНИЯ МЕЖДУ ВЕЛИЧИНАМИ В КАЧЕСТВЕ УСЛОВИЙ 
Так же как в математике, в алгоритмическом языке используются следующие знаки 

отношения между величинами: 
для числовых величин 

    < меньше ≥ не меньше = равно 
    > больше ≤ не больше ≠ не равно 

для литерных величин 
  = равно ≠ не равно 

В алгоритмах работы с числовыми и литерными величинами именно такие отноше-
ния между величинами и используются в качестве условий. 

Пример 9.1. Построить алгоритм решения следующей задачи: «Ракета запускается с 
точки на экваторе Земли со скоростью у (в км/с) в направлении движения Земли по орбите 
вокруг Солнца. Каков будет результат этого запуска ракеты в зависимости от скорости у?» 
aлг запуск ракеты (вещ у, лит А) 
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 арг у 
 рез А 
нач 
 если у < 7,8 
 то А := „ракета упадет на Землю" 
 иначе если у < 11,2 
 то А:= „ракета станет спутником Земли" 
 иначе если у < 16,4 
 то А := „ракета станет спутником Солнца" 
 иначе А := „ракета покинет Солнечную систему" 
 все 
 все 
 все 
кон 

В этом алгоритме имеются переменные величины у и А, постоянные числовые вели-
чины 7,8; 11,2; 16,4 и постоянные литерные величины „ракета упадет на Землю" и др. В 
составных командах в качестве условия используются сравнения переменной величины у 
и постоянных величин 7,8; 11,2; 16,4. Все условия состояли только из одного отношения 
между величинами. Такие условия называются простыми. 

Пример 9.2. Построить алгоритм вычисления выражения 
1

11
−

+=
xx

y . При этом 

учесть, что при х = 0 и при х = 1 выражение не имеет смысла. 
алг пример (вещ х, у, лит Р) 
 арг х 
 рез у, Р 
нач 
 если х = 0 или х = 1 
 то Р := „значение у не определено" 

 иначе Р := „значение у определено"; 
1

11:
−

+=
xx

y  

все 
кон 

В этом алгоритме команда ветвления содержит условие, которое состоит из двух отноше-
ний, соединенных словом или: 

х = 0 или х = 1. 

Условия такого вида называются составными. При записи составных условий на ал-
горитмическом языке пользуются служебными словами и, или, не. Использование слу-
жебных слов аналогично их использованию в обычном языке. Пусть а и b — условия. Ус-
ловие а и b соблюдается, если соблюдаются вместе и a и b. Условие а или b соблюдается, 
если соблюдается хотя  бы одно из условий а, b, неважно какое. Условие не а соблюдает-
ся, если не соблюдается а, и наоборот. 
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Пример 9.3. Составить алгоритм решения следующей задачи: «Точка А задана коор-

динатами х и у. Определить, принадлежит ли точка А фигуре на плоскости  (рис. 18)». 
Этой фигуре будут принадлежать точки, координаты которых удовлетворяют усло-

виям: 

⎩
⎨
⎧

≤+

≥

.1
,0
yx

y
 

Соответствующий алгоритм имеет вид: 
aлг фигура (вещ х, у, лит z) 
 арг х, у 
 рез z 
нач 
 если у ≥ 0 и |х| + |у| ≤ 1 
 то z := „точка принадлежит фигуре" 
 иначе z : — „точка не принадлежит фигуре" 
 все 
кон 

Используем этот алгоритм для проверки, принадлежит ли фигуре точка А с коорди-
натами х = − 0,4 и у = 0,95. 

Проверяем условие: у ≥ 0 и |х| +|у| ≤ 1. Подставим значения аргументов: 0,95 ≥ 0 и 
|−0,4| + 0,95 ≤ 1. 

Отношение 0,95 ≥ 0 является правильным, т. е. первая часть составного условия со-
блюдается. Однако |− 0,4| + 0,95 = 0,4 + 0,95 = 1,35 > 1. Вторая часть условия и, следова-
тельно, все условия не соблюдаются. Результату z присваивается значение „точка не при-
надлежит фигуре". 

10. ТАБЛИЧНЫЕ ВЕЛИЧИНЫ 

При решении задач человек очень часто пользуется таблицами: при записи исходных 
данных, получении справочной информации и т. п. Таблицы бывают разными, но наибо-
лее часто встречаются линейные и прямоугольные таблицы. 

Значения, образующие линейную таблицу, располагаются при записи на бумаге в 
строчку или в столбец. Каждому значению, или элементу таблицы, соответствует его по-
рядковый номер, и наоборот: стоит задать порядковый номер, и сразу ясно, о каком эле-
менте таблицы идет речь. 

Например, на метеостанции каждый час измеряется температура воздуха и значения 
измерений за сутки записываются в таблицу (табл. 8). 

 
                                                                                                                                           Таблица 8 

Время измерения, ч 0 1 2 3 .  .  . 22 23 
Температура, °С 17 16 15,5 14 .  .  . 18 17,5 
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Эта линейная таблица содержит 24 элемента, занумерованные от 0 до 23. Например, 
второй элемент таблицы имеет значение 15,5, а нулевой элемент — значение 17. 

Запишем в таблицу средние температуры дня, измеренные за неделю (табл. 9). 
 

Таблица 9 
Дата измерения 22 23 24 25 26 27 28 

Средняя температура, °С 15 15,5 17 20 18 17 17,5 
 
Очевидно, что при хранении линейной таблицы порядковые номера хранить нет не-

обходимости: зная начало нумерации, можно путем отсчета найти любой элемент. Кроме 
того, полезно знать и самый большой порядковый номер, так как это позволяет опре-
делить заранее размер таблицы. Таким образом, чтобы указать, что некоторая величина 
является линейной таблицей, нужно задать тип элементов таблицы, ее имя, начальный и 
конечный порядковые номера ее элементов. 

В алгоритмах работы с табличными величинами это указание записывается следую-
щим образом: служебное слово, указывающее тип (цел, вещ, лит и т. п.), затем служебное 
слово таб (таблица), имя таблицы, за которым стоят в квадратных скобках начальный и 
конечный порядковые номера ее элементов, разделенные двоеточием. Например: 
 вещ таб время  [0:23] 
 вещ таб средняя температура  [22:28] 

Аналогичным образом происходит описание и прямоугольных таблиц. 
Запишем таблицу умножения в виде прямоугольной (табл. 10). 
                                                                                                                                                                           Таблица 10 

 множимое 
 1 2 3 .  .  . 8 9 
1 1 2 3 .  .  . 8 9 
2 2 4 6 .  .  . 16 18 
3 3 6 9 .  .  . 24 27 

.  
.  

. 

.  
.  

. 

.  
.  

. 

.  
.  

. 

.  
.  

. 

.  
.  

. 

.  
.  

. 

8 8 16 24 .  .  . 64 72 

мн
ож

ит
ел
ь 

9 9 18 27 .  .  . 72 81 
 
Для прямоугольной таблицы должны быть указаны границы номеров как по верти-

кали, так и по горизонтали. Для данного примера это описание имеет вид: 
цел таб произведение [1:9,  1:9] 
 границы  границы 
 множителя множимого 

Работа с таблицей сводится к работе с ее элементами. Для того чтобы указать, какой 
элемент таблицы в данный момент используется, достаточно указать его порядковый но-
мер. Этот порядковый номер приписывается к имени таблицы в виде индекса. 

Из курса математики хорошо известны обозначения а0, а1, b5, аi, хт+п и т. п. Однако 
для того чтобы исполнителю было легче отличить переменные а0, а1 и т. д. от нулевого, 
первого и т. д. элемента таблицы а, принято порядковый номер элемента таблицы заклю-
чать в квадратные скобки и помещать вслед за именем таблицы на том же уровне строки, 
например: 

a [i], произведение [2,7] и т. д. 

Рассмотрим примеры использования таблиц в алгоритмах. 
Пример 10.1. Построить алгоритм, который находит сумму S вещественных чисел, 

образующих таблицу а из 1000 элементов, занумерованных от 1 до 1000. Для отсчета ко-
личества просуммированных чисел используется промежуточная целая переменная I, ко-
торая пересчитывает элементы таблицы. 
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алг сумма (вещ таб а [1:1000], вещ S) 
 арг а 
 рез S 
нач цел i 
 i := 1 
 S := 0 
 пока i ≤ 1000 
 нц 
 S := S + a [i] 
 t : = t + 1 
 кц 
кон 

Использование переменной i в качестве индекса позволяет записать прибавление по 
очереди всех элементов таблицы в виде одной повторяемой команды присваивания S := S 
+ a [i]. 

Пример 10.2. Построить более сложный алгоритм — алгоритм заполнения таблицы 
умножения (табл. 10). 
aлг таблица умножения (цел таб произведение [1:9, 1:9]) 
 рез произведение 
нач цел i, j 
 i := 1 
 пока i ≤ 9 
 нц 
 j : = 1 
 пока j ≤ 9 
 нц 
 произведение [i, j] := i · j 
 j := j + 1 
 кц 
 i := i + l 
 кц 
кон 

Рассмотрим подробнее этот алгоритм. В нем есть две команды повторения, причем 
одна из команд повторения входит в состав другой команды. 

Сначала исполнитель присваивает i значение 1 и переходит к выполнению первой 
внешней команды повторения. Так как условие цикла при этом значении соблюдается, он 
должен выполнить все команды, входящие в состав этого цикла. 

Он присваивает j значение 1 и переходит к выполнению второй внутренней команды 
повторения. Команда повторения считается выполненной, когда перестает соблюдаться 
входящее в ее состав условие, т. е. когда j станет больше 9. Это произойдет после того, как 
входящая в ее состав серия команд будет выполнена 9 раз. В результате окажется запол-
ненной первая строка таблицы произведение. 

Поясним это. 
Элементы первой строки таблицы произведение имеют индексы: 

произведение [1,1], произведение [1,2], ..., произведение [1,9]. 
Команда присваивания, входящая в указанную серию, имеет вид: 

произведение [i, j] := i ·j, 
при этом i равно 1, а j меняется от 1 до 9, т. е. действительно первая строка таблицы про-
изведение в результате выполнения второй (внутренней) команды повторения окажется 
заполненной. 

После этого исполнитель продолжит выполнение первой (внешней) команды повто-
рения. Он увеличит значение i на единицу так, что i станет равным 2. Проверит условие 
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внешней команды повторения (i ≤ 9), снова присвоит j значение 1. Затем снова надо вы-
полнять вторую (внутреннюю) команду повторения. Как мы знаем, в результате выполне-
ния этой команды заполнится строка с номером i таблицы произведение. 

Продолжая этот процесс, исполнитель заполнит всю таблицу произведение. 

Вопро сы  
1. Какие величины встречаются в рассмотренных алгоритмах? 
2. Что такое имя величины? Приведите примеры имен. 
3. Что такое значение величины? Приведите примеры изменения значений величин 

в процессе исполнения алгоритма. 
4. Приведите примеры постоянных и переменных величин. 
5. Какие величины называются: а) аргументами; б) результатами алгоритма? При-

ведите примеры. 
6. Какие типы величин используются в алгоритмическом языке? Приведите приме-

ры. 
7. Какие величины называются промежуточными? Приведите примеры. 
8. Команды какого вида называются командами присваивания? Поясните на при-

мерах их назначение. 
9. Как выполняется команда присваивания? 
10. Какие знаки отношений между величинами используются в алгоритмическом 

языке? 
11. Чем различаются знаки отношений числовых и литерных величин? 
12. Для чего в алгоритмическом языке служат знаки отношений между величина-

ми? 
13. Какие условия называются: а) простыми; б) составными? Приведите примеры. 
14. Какие величины называются табличными? Приведите примеры. 
15. Какая таблица называется: а) линейной; б) прямоугольной? Приведите приме-

ры. 

Упражнения 1 
1. Укажите тип следующих величин: 4; 4,0; «четыре»; «4,4»; «аргумент»; 0,0; 

«ноль»; 0. 
2. Составьте и запишите алгоритм решения задачи: «В трех сосудах содержится во-

да. В первом сосуде содержится V1, л воды температуры t1 во втором — V2 л температуры 
t2, в третьем — V3 л температуры t3. Воду слили в один сосуд. Найдите объем и темпера-
туру t воды в этом сосуде (изменением объема воды при изменении температуры пренеб-
речь)». 

Исполните алгоритм для V1, = 0,2 л, V2 = 1 л, V3 = 0,7 л; t1,= 1°С, t2 = 3°С, t3 = 20°С. 
3. Составьте и запишите алгоритм решения задачи. Принадлежит ли точка А (х, у) 

фигуре на плоскости (рис. 19)? 
 

x 0,2 -0,1 -0,15 0,25 0,3 0,9 0 1 -0,5 
y 0,3 -0,1 -0,85 -0,55 0,4 0,15 0 1 0,5 

 

                                                 
1Во всех упражнениях на составление алгоритмов исполнителю доступны все арифметические дей-

ствия. 
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Исполните алгоритм для следующих координат точек: 
4. Заполните таблицу промежуточных значений для алгоритмов: 

 а) нахождения наибольшего общего делителя чисел 161, 253; 
 б) решения уравнения 2x2 + 3x − 5 = 0. 

5. Запишите с использованием промежуточных величин алгоритмы 

 а) вычисления выражения 
4

)4(
4

4
6

4
3

32222 +
+

+
+

+
+=

aaaay  при a = 11,7; 

 б) решения уравнения ax3 + bх = 0. 
6. Составьте и запишите следующие алгоритмы: 

Даны площадь круга S1, и площадь квадрата S2. Определите, поместится ли: 1) круг в 
квадрате; 2) квадрат в круге. Проверьте алгоритм для нескольких значений S1, и S2. 

7. Запишите алгоритм вычисления функции у = f(х), заданной графиком (рис. 20), ис-
пользуя знаки отношения, приведенные на с. 37. 

8. Запишите алгоритм вычисления факториала натурального числа п по формуле n! = 
1 · 2 ·3 ·... · (n — 1) · n. 

9. В одной команде разрешается использовать только одну операцию. Запишите ал-
горитмы вычисления выражений: 

 а) ;
2

12 32 ++
=

xxy  б) y = 2 sin x2 + 4 cos x; 

 в) y = 4 log (x2 + 2 ).1 3x
x
+  

10. Объясните условие кошка = „кошка". Что является именем, что — значением ве-
личины? 

11 Из скольких элементов состоят таблицы, описанные следующим образом: 
 а) вещ таб х [1:10]; 
 б) цел таб х [4:5]; 
 в) вещ таб x [100:100]; 
 г) вещ таб x [1:N]; 
 д) цел таб х [− 1:1]; 
 е) вещ таб х [M:N] 
 ж) цел таб х [3:4,5:10]; 
 з) вещ таб х [1:N, 5:10]? 

12. Как задать вектор на плоскости, таблицей? 
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13. Запишите правило сложения векторов (рис.21) как действие с таблицами, их за-

дающими. 

 
 
 
 
 

§ 4. ВСПОМОГАТЕЛЬНЫЕ АЛГОРИТМЫ 

11. ПОНЯТИЕ ВСПОМОГАТЕЛЬНОГО АЛГОРИТМА 
При построении новых алгоритмов могут использоваться алгоритмы, составленные 

раньше. Алгоритмы, целиком используемые в составе других алгоритмов, будем называть 
вспомогательными (или подчиненными) алгоритмами. Не исключено, что алгоритм, со-
держащий ссылку на вспомогательный, сам в определенной ситуации может оказаться в 
роли вспомогательного алгоритма. Использование ранее составленных алгоритмов при 
составлении новых находит широкое применение в практике алгоритмизации. 

Все приведенные в учебнике алгоритмы, представляющие интерес для последующе-
го использования, объединены в особый фонд — библиотеку алгоритмов, которая поме-
щена в приложении. 

Правила включения вспомогательных алгоритмов в основные в процессе их исполь-
зования рассмотрим на примерах. 

Пример 11.1. Алгоритм поиска большего из двух чисел α и β (обозначим его БИД) 
может быть записан следующим образом: 
алг БИД  (вещ α, β, γ) 
 apг α, β 
 рез γ 
нач если α ≥ β 
 то γ := α 
 иначе γ := β 
 все 
кон 
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Рассмотрим более подробно использование вспомогательного алгоритма при состав-
лении основного алгоритма. Записывая основной алгоритм, мы в какой-то момент обна-
руживаем, что нам надо из двух величин хну выбрать большую и результат присвоить не-
которой величине z. Чтобы воспользоваться вспомогательным алгоритмом, надо: 1) при-
своить значение величины х аргументу α, значение величины у аргументу β; 2) исполнить" 
алгоритм БИД; 3) значение результата γ присвоить переменной z. Такое обращение к 
вспомогательному алгоритму в алгоритмическом языке можно записать в виде одной про-
стой команды вызова вспомогательного алгоритма, который в нашем случае будет иметь 
вид БИД (х, у, z). 

После выполнения команды вызова выполняется следующая за ней в основном алго-
ритме команда. 

Пример 11.2. Алгоритм поиска большего из трех чисел (обозначим его БИТ) можно 
составить в форме двукратного обращения к алгоритму БИД: 
aлг БИТ (вещ а, b, с, у) 
 арг а, b, с 
 рез у 
нач вещ z 
 БИД (a, b, z) 
 БИД (z, с, у) 
кон 

При записи шагов исполнения основного алгоритма, содержащего в себе вызов 
вспомогательного алгоритма, в таблице значений записываются только величины основ-
ного алгоритма. При записи шага, состоящего в вызове вспомогательного алгоритма, за-
писываются новые значения тех величин, которым присваиваются результаты данного 
исполнения вспомогательного алгоритма. Если есть необходимость проследить исполне-
ние вспомогательного алгоритма, то для каждого обращения к нему составляется своя 
таблица значений. 

Исполним алгоритм БИТ для аргументов 3, 9, 5. Составим таблицу значений (табл. 
11). 

                                                                                                                        Таблица 11 

Аргументы Промежуточная  ве-
личина Результат Проверка 

условий Шаги алго-
ритма a b c z y  

 3 9 5    
1    9   
2     9  
 
Из этой таблицы видно, что каждое исполнение вспомогательного алгоритма — это 

один шаг основного алгоритма. Проследим теперь, как исполняется алгоритм БИД для ар-
гументов 3, 9. Составим таблицу значений (табл. 12). 

 
                                                                                                                        Таблица 12 

Шаги алгоритма Аргументы Результат 
 α β γ Проверка условий 

 3 9   
1    3 ≥ 9 (нет) 
2   9  

 
Аналогично можно было бы проследить исполнение алгоритма БИД для аргументов 

9,5. 
Пример 11.3. Составить алгоритм поиска наибольшего элемента в линейной таблице 

из п чисел х [1:n], используя алгоритм БИД как вспомогательный. 
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Наибольшее число в линейной таблице можно отыскать путем многократного при-
менения алгоритма БИД к очередному элементу таблицы и результату предыдущего при-
менения алгоритма БИД. 

Запись алгоритма поиска наибольшего элемента линейной таблицы (НЭЛТ) на алго-
ритмическом языке: 
aлг НЭЛТ (цел п, вещ таб х [1:n], вещ у) 
 арг п, х 
 рез у 
нач цел i 
 i : = 2; у := х[1] 
 пока i ≤ n 
 нц 
 БИД (у, x [i], у); i := i + 1 
 кц 
кон 

12. ПОСЛЕДОВАТЕЛЬНОЕ ПОСТРОЕНИЕ АЛГОРИТМА 
Метод вычленения вспомогательного алгоритма может быть успешно использован в 

процессе поиска и разработки нового алгоритма тогда, когда вспомогательный алгоритм 
еще неизвестен. 

Процесс последовательного построения алгоритма может выглядеть следующим об-
разом. Алгоритм сначала формулируется в самых «крупных» командах, при этом в записи 
алгоритма могут использоваться команды, выходящие за рамки возможностей исполните-
ля. Затем на каждом последующем этапе отдельные детали алгоритма уточняются, при 
этом недоступные исполнителю команды записываются как вызовы вспомогательных ал-
горитмов. После этого так же строятся вспомогательные алгоритмы. Процесс продолжает-
ся до тех пор, пока все алгоритмы не будут состоять из команд, понятных исполнителю. 
Такой способ построения алгоритма называется методом последовательного уточнения. 

Рассмотрим этот метод на примере построения алгоритма вычисления степени у = 
аx, где х — целое число, а ≠ 0. В курсе алгебры степень с целым показателем определяется 
так: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<

>
=

=

− .0 если ,1
,0 если ,

,0 если ,1

x
a

xa
x

a

x

xx  

Учитывая, что ,11 x

x aa

−

− ⎟
⎠
⎞

⎜
⎝
⎛=  запишем искомый алгоритм: 

aлг степень с целым показателем  (вещ а, цел х, вещ у) 
 арг а, х 
 рез у 
нач 
 если х = 0 
 то у: = 1 
 иначе 
 если x :> 0 
 то вычислить у = аx, х — целое положительное число 

 иначе вычислить у =
x

a

−

⎟
⎠
⎞

⎜
⎝
⎛ 1 , − х —целое положительное число 

 все 
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 все 
кон 

Замечаем, что в тексте алгоритма в двух местах предписывается выполнять похожие 
действия, а именно вычислять степень с одним натуральным показателем, но с различны-
ми основаниями. В этих местах может быть ссылка на один и тот же вспомогательный ал-
горитм вычисления степени с натуральным показателем, и тогда алгоритм приобретает 
следующий вид: 
алг степень с целым показателем  (вещ а, цел х, вещ у) 
 арг а, х 
 рез у 
нач 
 если х = 0 
 то у: = 1 
 иначе 
 если х > 0 
 то степень (а, х, у) 

 иначе степень ⎟
⎠
⎞

⎜
⎝
⎛ − yx

a
,,1  

 все 
 все 
кон 

 
 
Схема этого алгоритма приведена на рисунке 22. 
Теперь остается построить вспомогательный алгоритм вычисления степени с нату-

ральным показателем у = αn. При вычислении αn по формуле αn = 4 34 21
раз 

...
n

ααα ⋅⋅⋅  нужно проде-

лать (п − 1) умножение. 
При составлении алгоритма удобно пользоваться формулой 

4 34 21
раз 

,...1
n

n αααα ⋅⋅⋅⋅=  

в которой число умножений равно показателю степени. 
aлг степень (вещ α, нат п, вещ у) 
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 арг α, п 
 рез у 
нач цел i 
 у := 1; i := l 
 пока i ≤ n 
 нц 
 y := у   α 
 кц 
кон 

Рассмотрим процесс исполнения общего алгоритма вычисления степени с целым по-
казателем у = аx для двух аргументов 5, —2 (табл. 13). 

                                                                                                                        Таблица 13 
Шаги алгоритма Аргументы Результат 

 a x y Проверка условий 

 5 -2   
1    -2 = 0 (нет) 
2    -2 > 0 (нет) 
3   0,04  

 
 
Проследим теперь исполнение вспомогательного алгоритма степень для аргументов 

0,2, 2 (табл. 14). 
                                                                                                                        Таблица 14 

Шаги алгоритма Аргументы Промежуточная  
величина Результат 

 α n i y 
Проверка условий 

 0,2 2    
1    1  
2   1   
3     1 ≤ 2 (да) 
4    0,2  
5   2   
6     2 ≤ 2 (да) 
7    0,04  
8   3   
9      3 ≤ 2 (нет) 

 

Вопро сы  
1. Для чего нужны вспомогательные алгоритмы? 
2. Как записывается команда вызова вспомогательного алгоритма? 
3. Каков порядок исполнения основного алгоритма при использовании вспомога-

тельных алгоритмов? 
4. В чем заключается метод последовательного уточнения при построении алго-

ритмов? 
5. Может ли алгоритм, содержащий ссылку на вспомогательный, оказаться в роли 

вспомогательного? 

Упражнения  
1. Составьте алгоритм вычисления по формуле 
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923
5

2 ++−

+
=

xx
x

y , 

используя вспомогательный алгоритм вычисления модуля числа МОД (а, т). 
2. В четырехугольнике ABCD АВ = х, ВС = у, CD = z, AD = t, AC = d. Составьте алго-

ритм вычисления площади четырехугольника, используя вспомогательный алгоритм 
ГЕРОН (а, b, с, S) вычисления площади треугольника по формуле Герона: 

),)()(( cpbpappS −−−=  где .
2

)( cbap ++
=  

3. Постройте алгоритм решения биквадратного уравнения ах4 + bх2 + с = 0, используя 
как вспомогательный алгоритм решение квадратного уравнения (с. 32). 

4. Постройте алгоритм нахождения наименьшего общего кратного (НОК) двух нату-
ральных чисел, используя алгоритм нахождения наибольшего общего делителя (с. 36) как 
вспомогательный. Исполните алгоритм для аргументов 14 и 26, 21 и 84. 
Ука з а н и е . Для любых натуральных чисел а, b, с справедливо тождество а·  b = НОД (а, b) · НОК 
(а, b). 

5. Постройте алгоритм нахождения наибольшего общего делителя трех натуральных 
чисел, используя вспомогательный алгоритм нахождения наибольшего общего делителя 
двух чисел. Исполните  построенный  алгоритм для  аргументов 24, 18, 12. 
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Раздел II 
ПОСТРОЕНИЕ АЛГОРИТМОВ 

ДЛЯ РЕШЕНИЯ ЗАДАЧ 

Как уже отмечалось, одна из основных целей курса информатики — научиться ре-
шать задачи с использованием ЭВМ. Решение задачи в этом случае требует предваритель-
ной работы и производится в несколько этапов. Часть этих этапов выполняется только че-
ловеком, а другая часть — человеком и ЭВМ. 

Цель данного раздела — познакомиться с этапами решения задачи, предшествую-
щими непосредственной работе на ЭВМ. Эти этапы заканчиваются построением алгорит-
ма для решения задачи. 

Следующий этап, связанный с исполнением алгоритма на ЭВМ, будет рассмотрен в 
X классе. 

§ 5. ЭТАПЫ РЕШЕНИЯ ЗАДАЧИ С ИСПОЛЬЗОВАНИЕМ ЭВМ 
Формулировка условия любой математической задачи начинается с описания исход-

ных данных и предпосылок, которые излагаются на языке строго определенных матема-
тических понятий. Затем формулируется цель решения, т. е. указывается, что именно не-
обходимо определить в результате решения задачи. Точную формулировку условия зада-
чи называют также математической постановкой задачи, и решение любой задачи начина-
ется именно с ее постановки. В результате постановки задачи выделяются исходные дан-
ные или аргументы и те величины, значение которых нужно определить, т. е. результаты. 
Постановка задачи является первым этапом ее решения. 

При решении практических задач приходится иметь дело с реальными объектами — 
явлениями природы, физическими и производственными процессами, планами выпуска 
продукции и т. п. Для того чтобы поставить такую задачу, необходимо сначала описать 
объект исследования в математических терминах, т. е. построить его математическую мо-
дель, позволяющую свести исследование реального объекта к решению математической 
задачи. Степень соответствия модели реальному объекту проверяется практикой, экспе-
риментом. Практика дает возможность оценить построенную модель и уточнить ее в слу-
чае необходимости. 

Рассмотрим следующий пример. Пусть необходимо определить, каким образом бу-
дет двигаться тело, брошенное под углом к горизонту, и найти дальность бросания. Для 
решения задачи необходимо сделать некоторые допущения, при которых будет строиться 
математическая модель. В качестве таких допущений можно принять следующие предло-
жения: 

1. Пренебречь кривизной Земли, считая ее поверхность плоскостью. 
2. Пренебречь движением Земли. 
3. Считать ускорение свободного падения g постоянным. 
4. Пренебречь сопротивлением воздуха. 
Из курса физики известно, что при таких предположениях движение тела, брошенно-

го под углом α к горизонту с начальной скоростью v0, описывается системой уравнений: 
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При этом предполагается, что эти уравнения описывают движение тела в неподвиж-
ной системе координат, начало которой совмещено с точкой бросания, ось х направлена 
вдоль поверхности Земли в сторону бросания, а ось у — вертикально вверх. 

Эти уравнения являются математической моделью, описывающей движение тела. 
Исходя из этой модели, мы получим ответ на интересующий нас вопрос о дальности бро-
сания. 

Выразив из первого уравнения t и подставив его во второе уравнение, получим урав-
нение траектории: 

y = x tg α − x2

α22
0 cos2v

g  

Эта траектория приведена на рисунке 23. 
 

 
Решая квадратное уравнение x tg α − x2

α22
0 cos2v

g = 0, можно определить точки пере-

сечения этой траектории с осью x : x1 = 0 — точка бросания и х2 = 
g
v2

0  sin 2α ― точка па-

дения. 
Создание математической модели исследуемого явления позволяет поставить задачу 

математически. В нашем примере задача формулируется так: «Пусть движение тела, бро-
шенного под углом а к горизонту с начальной скоростью v0, описывается системой урав-
нений (1), и пусть заданы значения v0 и α. Требуется определить дальность (l) полета те-
ла». 

Исходными предложениями задачи являются уравнения (1), а исходными данными 
(аргументами) — значения v0 и а. Результатом решения является значение l. 

После постановки задачи начинается поиск метода ее решения. При использовании 
ЭВМ для решения задачи строится алгоритм. Таким образом, следующим этапом решения 
задачи является построение алгоритма. В рассмотренном примере алгоритм строится дос-
таточно просто: 

1) выразить t из первого уравнения системы (1) через х 
2) подставить полученное выражение во второе уравнение системы (1) 
3) положить у равным 0 
4) решить полученное квадратное уравнение 
5) взять в качестве ответа l ненулевой корень этого уравнения. 
Такой алгоритм может быть записан на алгоритмическом языке или в виде схемы. 
Теперь необходимо записать алгоритм в виде, доступном исполнению на ЭВМ. Так 

как ЭВМ «понимает» специальный язык, называемый языком программирования, то алго-
ритм должен быть записан на таком языке. Этот этап решения задачи называется записью 
алгоритма на языке программирования. Этот и последующие этапы решения задачи будут 
рассматриваться позднее, в X классе. 

Следующий этап — исполнение алгоритма с помощью ЭВМ. Этот этап завершается 
получением результата решения. 

Наконец, завершающий этап решения задачи — анализ полученных результатов. 
Этот анализ проводится с целью определения, насколько точно полученные результаты 
соответствуют реальности. Анализ результатов помогает уточнить модель, если это необ-
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ходимо. Кроме того, при решении задачи могут быть получены результаты, которые про-
тиворечат смыслу задачи. Например, если математическая модель, описывающая количе-
ство изделий, выпускаемых за день некоторым предприятием, представляет собой квад-
ратное уравнение, один из корней которого отрицателен, то такой результат противоречит 
смыслу задачи и должен быть отброшен. 

Во многих случаях анализ результатов задачи тоже проводится на ЭВМ. 
Итак, решение задачи с помощью ЭВМ разбивается на следующие этапы: 

— постановка задачи, включающая построение математической модели и выделе-
ние аргументов и результатов; 

— построение алгоритма; 
— запись алгоритма на языке программирования; 
— реализация алгоритма с помощью ЭВМ; 
— анализ полученных результатов. 

В следующих параграфах будут рассмотрены отдельные этапы решения задачи, при-
чем основное внимание будет обращено на построение алгоритма для решения задач. 

Упражнения  
1. Постройте математическую модель движения тела, брошенного вертикально 

вверх. 
2. Постройте математическую модель движения тела массой т по наклонной плоско-

сти с углом α. Трением пренебречь. 
3. Постройте математическую модель движения тела массой т по окружности ра-

диуса R. 

§ 6. АЛГОРИТМЫ ДЛЯ РАБОТЫ 
С ТАБЛИЧНЫМИ ВЕЛИЧИНАМИ 

Многие задачи, которые решаются с помощью ЭВМ, связаны с обработкой больших 
объемов информации. Для удобства обработки информация часто сводится в линейные 
или прямоугольные таблицы. Тогда обработка состоит из поиска в таблице нужного эле-
мента, записи в таблицу новых элементов, изменения порядка элементов в таблице и т. п. 
Преимущества ЭВМ перед другими исполнителями алгоритма и состоят в том, что ЭВМ 
может решать задачи по обработке таблиц, содержащих десятки и сотни тысяч элементов, 
достаточно быстро и тем самым освобождать человека от утомительной и непродуктив-
ной (рутинной) работы. 

Рассмотрим задачу поиска заданного элемента в линейной таблице. Будем предпола-
гать, что элементы таблицы являются числами. 

Итак, предположим, что имеется линейная таблица, имеющая имя „ключ", элементы 
которой — вещественные числа: 

вещ таб ключ  [1 :п]. 

Задача состоит в том, чтобы определить, имеется ли в этой таблице элемент, значе-
ние которого совпадает с заданным числом L. Если такой элемент существует, то необхо-
димо в качестве ответа получить порядковый номер этого элемента. В противном случае 
необходимо выдать номер, равный нулю. Будем просматривать подряд все элементы таб-
лицы, начиная с первого, и сравнивать их значения с L. Такой просмотр надо продолжать 
до тех пор, пока не будет найден элемент таблицы, равный L, или до тех пор, пока не бу-
дет просмотрена вся таблица (если такого элемента не существует). 

Опишем алгоритм поиска в таблице. Он будет использовать величины i (число про-
смотренных элементов) и k (номер искомого элемента). 

Вначале i будет равно 0, так как мы еще не просмотрели ни одного элемента табли-
цы. Затем i будет возрастать: мы будем просматривать все новые и новые элементы таб-
лицы, пытаясь найти среди них элемент, равный L. Если такой элемент обнаружится, то k 
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станет равным его номеру, а до тех пор k будет равно 0. Если числа L в таблице нет, то k 
так и останется равным нулю. Таким образом, значение переменной k будет сигнализиро-
вать об успехе (k > 0) или неуспехе (k = 0) поиска. 
aлг поиск (цел п, вещ таб ключ [1:п], вещ L, цел k) 
 арг ключ, п, L 
 рез k 
нач 
 цел i 
 i := 0; k := 0 
 пока i ≠ п и k = 0 
 нц 
 i := i + 1 
 если ключ [ i] = L 
 то k: = i 
 все 
 кц 
кон 

По я с н е н и е . Посмотрим, как будет выполняться наш алгоритм. Основная его 
часть — это команда повторения. Но еще до нее величинам i, k присваивается значение 0. 
Это соответствует смыслу этих переменных, ведь ни одного элемента еще не просмотрено 
и число L в таблице не найдено. Что происходит в команде повторения? Входящая в нее 
серия выполняется многократно и заканчивается, когда мы доходим до конца таблицы (i = 
п) или находим нужный элемент (k стало положительным). 

Пусть мы уже i раз выполнили серию, причем i ≠ п, и среди элементов (ключ [1], ..., 
ключ [i]) нет L (а значит, k = 0). Тогда мы начинаем выполнение серии еще раз. В первой 
команде серии i увеличивается на 1, т. е. становится равным номеру элемента, который мы 
должны сейчас просмотреть. Если этот элемент равен L, т. е. мы нашли нужный элемент, 
то k становится равным номеру этого элемента. Выполнение серии закончено, и больше 
она выполняться не будет. Если этот элемент отличен от L, то значение k = 0 сохраняется, 
серия закончена и мы снова возвращаемся к проверке условия цикла. 

Поиск нужного элемента может быть ускорен, если элементы таблицы упорядочены 
по своей величине, например в порядке возрастания своих значений или в алфавитном по-
рядке. Так, если фамилии в таблице расположены в алфавитном порядке, то при поиске 
нужной фамилии можно отыскать в таблице нужную первую букву и просматривать толь-
ко те фамилии, которые начинаются с этой буквы. 

Упорядочение таблицы приходится выполнять так часто, что, по оценкам специали-
стов, больше четверти времени работы всех ЭВМ приходится на выполнение этого про-
цесса, который называют также сортировкой. По этой причине для решения задачи сорти-
ровки с помощью ЭВМ было придумано много различных алгоритмов. Цель создания та-
ких алгоритмов — обеспечить достаточно быстрое решение задачи сортировки для разно-
го типа таблиц. 

Рассмотрим один из наиболее простых алгоритмов сортировки, идея которого состо-
ит в следующем. Будем сначала просматривать всю таблицу подряд с первого до послед-
него элемента и найдем элемент, имеющий наименьшее значение. Поменяем местами най-
денный элемент и первый элемент таблицы. В результате на первом месте окажется эле-
мент, имеющий наименьшее значение. Теперь будем просматривать все элементы табли-
цы, начиная со второго, и снова найдем среди них элемент, имеющий наименьшее значе-
ние. Поменяем местами этот элемент со вторым элементом таблицы, в результате чего на 
втором месте будет стоять элемент, имеющий наименьшее значение среди оставшихся. 
Продолжим процесс. В последний раз останется просмотреть только два последних эле-
мента таблицы, выбрать среди них элемент с наименьшим значением и поставить его на 
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предпоследнее место в таблице. После этого таблица будет упорядочена в порядке возрас-
тания значений составляющих ее элементов. 

Описанную задачу сортировки можно разбить на две задачи: задачу поиска в таблице 
элемента с наименьшим значением и задачу упорядочения таблицы путем перестановки 
найденного элемента с очередным (первым, вторым и т. д.) элементом таблицы. Рассмот-
рим каждую из этих задач. 

Пусть задана линейная таблица А, элементы которой нумеруются от К до N (К < N). 
Построим алгоритм поиска наименьшего элемента линейной таблицы. 
В этом алгоритме элементы таблицы будут просматриваться по порядку, от первого 

до последнего. Для этого будет использоваться переменная i — номер первого непросмот-
ренного элемента таблицы. Кроме i, будут использоваться еще две переменные: 
 МИН — «минимум из уже просмотренных элементов»; 
 L — «номер элемента, минимального среди уже просмотренных». 

Работа алгоритма начинается с серии команд, в которой мы присваиваем переменной 
МИН значение начального элемента таблицы. Этот элемент уже просмотрен, и мы берем 
К в качестве значения для l; просмотрен один элемент А [К], и он минимален среди про-
смотренных. Берем K + 1 в качестве значения для i — номера первого непросмотренного 
элемента. 

Выполнение серии, входящей в команду повторения, происходит следующим обра-
зом. Если МИН оказался больше, чем очередной элемент A [i], нужно сменить МИН, и мы 
это делаем, присваивая ему значение A [i]; соответственно с этим и значение l меняется, 
теперь оно равно i. Так как элемент с номером i уже просмотрен, серия завершается уве-
личением номера i на 1: 

i := i + 1. 

Работа алгоритма завершается, когда вся таблица просмотрена и номер ее мини-
мального элемента найден. Этот номер и является результатом. 

Алгоритм имеет следующий вид: 
алг МИНЭЛЕМЕНТ (цел К, N, вещ таб А[К : N], цел l) 
 арг А, К, N 
 рез l 
нач цел i, вещ МИН 
 МИН := А[К]; l := К; i:=K + 1 
 пока i < N 
 нц 
 если MИH := A[i] 
 то МИН := А[i]; l := i 
 все 
 i := i + 1 
 кц 
кон 

Построим теперь алгоритм упорядочения линейной таблицы, используя алгоритм 
МИНЭЛЕМЕНТ в качестве вспомогательного. Задача упорядочения таблицы формулиру-
ется следующим образом. Пусть задана линейная таблица С, элементы которой нумеру-
ются от п до М (п <.М): 

вещ таб С [п : М] 

Необходимо переставить элементы этой таблицы так, чтобы они шли в порядке возраста-
ния. 

Идея алгоритма упорядочения состоит в следующем. Применив алгоритм 
МИНЭЛЕМЕНТ к таблице С [п : М], мы определим номер l элемента этой таблицы, 
имеющего наименьшее значение. После этого поменяем значения элементов С [п] и С [I]. 
Тогда на n-м месте таблицы С (напомним, что таблица С начинается с элемента с номером 
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п) окажется самый маленький по величине элемент. На следующем шаге применяем алго-
ритм МИНЭЛЕМЕНТ к таблице С [п + 1 : М] и снова определяем номер l минимального 
элемента этой таблицы. Поменяем местами элементы С [п + 1 ] и С [l], тогда на п + 1-м 
месте окажется самый маленький из оставшихся элементов. Далее будем применять алго-
ритм МИНЭЛЕМЕНТ  к таблицам С [п + 2 : М],  С [п + 3 : М], ... ...,С [М − 1, М] и менять 
местами элементы С [п + 2] и С [l], С [n + 3] и С [l] и, наконец, С [М − 1] и С [l]. В резуль-
тате таблица С окажется упорядоченной. 

На алгоритмическом языке алгоритм упорядочения будет выглядеть следующим об-
разом: 
aлг упорядочение (цел п, М, вещ таб С[п : М]) 
 арг С, n, M 
 рез С 
нач цел i, l, вещ R 
 i := n 
 пока i < M 
 нц 
 МИНЭЛЕМЕНТ (i, M, C, l) 
 R := C [i] 
 C [i] := C [l] 
 C [l] := R 
 i := i + 1 
 кц 
кон 

Заметим, что обмен местами двух элементов таблицы С осуществляется с помощью 
трех команд: 

R := C [i] 
C [i] := C [l] 

C [l] := R 
Это объясняется тем, что как только выполнится команда С [i] := С [l], то «старое» 

значение С [i] будет «забыто», поэтому предварительно нужно запомнить это значение, 
присвоив его вспомогательной переменной R. Тогда третья команда обеспечит присваива-
ние этого значения переменной С [l]. 

В заключение рассмотрим задачу о вычислении значений элементов в некоторой по-
следовательности, которые сводятся в линейную таблицу, удобную для дальнейшего ис-
пользования. 

В качестве примера рассмотрим получение так называемых чисел Фибоначчи, на-
званных по имени итальянского математика средневековья (Леонардо Пизанского). Эти 
числа образуют бесконечную последовательность, причем каждое число в ней получается 
по следующему правилу: первые два числа (обозначим их F1, и F2) равны 1, т. е. F1 = F2 = 
1, а каждое следующее число, начиная с третьего, равно сумме двух предыдущих, т. е. F3 
= F1 + F2, F4 = F3 + F2 u т. д., вообще Fi = Fi−1 + Fi−2 для любого i ≥ 3. 

Построим алгоритм получения N чисел Фибоначчи, которые будем рассматривать 
как элементы линейной таблицы F [1 :.N]. Этот алгоритм на алгоритмическом языке имеет 
вид: 
алг Фибоначчи  (цел N, цел таб F[1 : N]) 
 арг N 
 рез F 
нач цел i 
 F[1] := 1 
 F[2] : = 1 
 i :=3 
 пока i ≤ N 
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 нц 
 F[i] := F[i −l] + F[i − 2] 
 i := i + l 
 кц 
кон 

Упражнения  
1. Постройте алгоритм определения номера элемента с максимальным значением из 

линейной таблицы В[1:n] в предположении, что значениями элементов таблицы В являют-
ся целые числа. 

2. Используя алгоритм упражнения 1 в качестве вспомогательного, постройте алго-
ритм упорядочения элементов линейной таблицы по убыванию их значений. 

3. Постройте алгоритм для подсчета числа положительных элементов в линейной 
таблице А. 

4. Задана линейная упорядоченная таблица, состоящая из целых чисел. Постройте 
алгоритм, с помощью которого значения всех элементов таблицы, меньшие 100, заменя-
лись бы числом 100. 

5. Постройте алгоритм, определяющий, сколько раз число 10 встречается среди эле-
ментов линейной таблицы А [1:1000], состоящей из целых чисел. 

6. Постройте алгоритм для определения среднего арифметического п чисел, сведен-
ных в линейную таблицу А [1:п]. (Напомним, что среднее арифметическое п чисел  вычис-

ляется по формуле .)...21

n
aaac n+++

=  

7. Постройте алгоритм для определения суммы всех положительных чисел, входя-
щих в линейную таблицу x[1:n]. 

8. Постройте алгоритм: 
а) переписи значений элементов одной таблицы в другую; 
б) заполнения линейной таблицы числом 0; 
в) заполнения i-й строки прямоугольной таблицы числом 0. 

§ 7. ПОСТРОЕНИЕ АЛГОРИТМОВ ДЛЯ РЕШЕНИЯ ЗАДАЧ 
ИЗ КУРСА МАТЕМАТИКИ 

Понятие алгоритма оказывается очень важным при решении многих математических 
задач. При этом объекты, действия над которыми описывает алгоритм, могут быть самы-
ми разными. Построив алгоритм решения задачи и записав его на алгоритмическом языке, 
можно многократно применять его, уже не вникая в условия задачи. 

Пример 1. Алгоритм вычисления значения многочлена. 
Пусть дан многочлен х4 + 2х3 + Зх2 − 5х − 15. Требуется вычислить значение много-

члена при х = 2. 
Существует общепринятый способ вычисления значений многочлена: найти числа х2, 

х3 и х4 при x := 2, затем вычислить 2х3, Зх2 и 5х и, наконец, путем сложения и вычитания 
получить значение многочлена. При вычислении многочлена потребовалось десять дейст-
вий, так как х2 = х · х, х3 = х · х2, х4 = х · х3. 

Вычисление значения многочлена может быть упрощено. Для этого перепишем за-
данный многочлен в виде 

х4 + 2х3 + 3х2 − 5х − 15 = (((х + 2)х + 3)х − 5)х − 15 
и будем выполнять операции в порядке, определяемом скобками. Тогда потребуется семь 
арифметических действий. Этот способ вычисления значения многочлена называется схе-
мой Горнера. 

Объясним, как, применять его к произвольному многочлену. 
Пусть задан многочлен 
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а0х3 + а1х2 + а2х + а3. 
Преобразуем его к виду 

((а0х + ах) х + а2) х + а3 
и будем вычислять последовательно такие величины: 
  а0 · х     прибавляем а1, 
  a0x + a1    умножаем на х 
  (а0х + а1)х    прибавляем а2 
  (а0х + а1)х + а2   умножаем на х 
  ((а0х + a1)x + а2)х  прибавляем а3 
  ((а0х + а1)х + а2)х + а3  

Последняя величина и будет искомым значением многочлена. Так можно вычислить 
значение произвольного многочлена 

а0хп + а1хn−1+ ... + an−1 x + an, 
преобразовав его к виду 

(((а0x + а1)х + а2)х + ... + ап-1)х + ап. 
Алгоритм вычисления значения многочлена п-й степени выглядит следующим обра-

зом: 
aлг схема Горнера  (цел п, вещ х, вещ таб а[0:n], вещ у) 
 apг п, а, х 
 рез у 
нач цел i 
 i := 0; у := а[0] 
 пока i ≠ п 
 нц 
 i := i+1 
 у := у · x + a[i] 
 кц 
кон 

П р и м е р 2. Алгоритм приближенного вычисления площадей. Пусть график функ-
ции f(x) имеет вид, изображенный на рисунке 24. 

Пусть требуется приближенно вычислить площадь фигуры, ограниченной графиком 
функции f(x) и прямыми х = а, х = b, у = 0. Эта фигура называется криволинейной трапе-
цией и отмечена на рисунке штриховкой. 

Идея алгоритма вычисления площади криволинейной трапеции состоит в следую-
щем. Разобьем отрезок [а, b] на п равных отрезков точками а = х0<х1<х2<...<хn = b и на ка-
ждом из полученных отрезков построим прямоугольник, одной стороной которого будет 
отрезок [xi, xi+1], а другой — отрезок, длина которого равна f(xi). Случай при п = 4 показан 
на рисунке 25. 

 

 
 
Площадь криволинейной трапеции можно приближенно считать равной сумме пло-

щадей заштрихованных прямоугольников. Можно получить другую картину (см. рис. 26), 
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если в качестве второй стороны прямоугольников выбирать отрезки, длины которых рав-
ны f(xi+1), i = 0, 1, 2, ..., п − 1. 

Ясно, что если увеличить число отрезков [xi, xi+1], т. е. отрезок [a, b] разбить на 
большее число равных отрезков, то сумма их площадей все с большей точностью будет 
совпадать с площадью криволинейной трапеции. Значит, точность вычисления площади 
криволинейной трапеции определяется величиной п. 

Площадь каждого прямоугольника можно вычислить так. Одна из сторон прямо-

угольника, построенного на отрезке [xi,.xi+1], равна n
abh −

= , а вторая — f(xi) либо f(xi+1). 

Поэтому в первом случае площадь «левого» прямоугольника )( ixf
n

ab
⋅

− , а во втором 

случае площадь «правого» прямоугольника )( 1+⋅
−

ixf
n

ab . 

Площадь криволинейной трапеции в первом случае приближенно равна сумме «ле-
вых» прямоугольников: 
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а во втором случае — сумме «правых» прямоугольников: 

)),(...)()(( 21 nxfxfxf
n

ab
+++

−  

причем, чем больше п, тем больше точность вычисления площади криволинейной трапе-
ции. 

Обозначив величину площади S, запишем алгоритм приближенного вычисления 
площади криволинейной трапеции для случая «левых» прямоугольников. 
алг площадь (вещ, а b, S, цел п) 
 apг a, b, n 
 рез S 
нач вещ h, x, нат i 

 ;:
n

abh −
=  S := 0; х:=а; i:= 1 

 пока i ≤ n 
 нц 
 S:=S + f(x) · h 
 х := х + h 
 i := i + 1 
 кц 
кон 

Для решения квадратного уравнения ах2 + bх + с = 0 используются известные форму-

лы вычисления корней: .
2

42

2,1 a
acbbx −±−

=  Соответствующие алгоритмы были рас-

смотрены выше. Это алгоритмы, основанные на так называемых точных методах решения. 
Не всегда, однако, для решения уравнения можно применить точный метод. Например, 
для уравнения 2x − cos x := 0 уже не существует равносильных преобразований, приводя-
щих к выражению для переменной х. На практике часто встречаются такие уравнения. 

Поэтому широко используются приближенные методы решения уравнений, позво-
ляющие тем не менее получать ответ с любой желаемой степенью точности. Особенно 
широкое применение эти методы получили в связи с применением вычислительных ма-
шин. 

Рассмотрим этот вопрос сначала в общем виде. Пусть имеется уравнение с одной пе-
ременной f(x) ― 0, где f(x) — некоторая непрерывная функция. С геометрической точки 
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зрения корень уравнения f(x) = 0 — это точка пересечения графика функции f(x) с осью х. 
Корней может быть не один, а несколько, тогда на графике будет соответствующее число 
точек пересечения (рис. 27). 

 

 
 
Очевидно, что графический метод может в отдельных случаях использоваться как 

метод грубого решения уравнения. Эта задача значительно облегчается, если удается пре-
образовать уравнение f(x) = 0 к равносильному виду f1(x) = f2(x) таким образом, чтобы гра-
фики функции f1(x) и f2(x) могли быть легко построены. В этом случае корень уравнения 
— это абсцисса точек пересечения графиков функций f1(х) и f2(x) (рис. 28). Графическим 
путем можно достаточно точно определить отрезки, в каждом из которых содержится 
один корень уравнения. Это так называемый этап отделения корня. 

П р и м е р 3. Отделить корень уравнения 2х — cos х = 0. 
Преобразуем уравнение к виду 2х — cos x и построим графики функций f1(x) = 2x и 

f2(x) = cos x; (рис. 29). Из рисунка видно, что уравнение 2х — cos х = 0 имеет единствен-
ный корень, принадлежащий отрезку [0; 1]. 

 
 
Предположим, что непрерывная функция f(x) имеет на концах некоторого отрезка 

значения разных знаков. В этом случае она обязательно имеет на этом отрезке хотя бы 
один корень (рис. 30, а, б). Как видно из рисунка 30, а, функция может иметь несколько 
корней. Если же она возрастает на этом отрезке (или убывает на нем), то корень единст-
венный (рис. 30, б). Приведем один из методов отыскания корня — метод половинного 
деления. Этот метод применим в том случае, когда функция принимает значения разных 
знаков на концах некоторого отрезка. Он позволяет найти один из корней функции на 
этом отрезке. Если их несколько (как на рис. 30, а) или если значения функции на концах 
отрезка одного знака (рис. 30, в), то метод половинного деления не позволяет найти все 
корни функции на данном отрезке. Тем не менее он часто оказывается полезным. 

Пусть функция f(x) непрерывна на отрезке [а; b] и принимает на его концах значения 
разных знаков. Составим алгоритм вычисления корня уравнения f(x) = 0 с заданной точно-
стью. 

Будем последовательно сужать отрезок [а; b], пользуясь следующим методом. Разде-

лим отрезок [а; b] пополам точкой 
2

)( bac +
=  и вычислим значение f(c). После этого от-
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бросим ту часть отрезка [а; b], на которой функция f(x) знака не меняет (на рис. 31 такой 
частью является отрезок [а; с]). Процесс будем продолжать до тех пор, пока длина отрез-
ка, содержащего корень, не станет меньше 2ε.  

 
 

Действительно, если в этом случае в качестве корня Δх взять середину отрезка 
2

ba +  

(см. рис. 32), то допущенная при этом погрешность х не будет превышать ε (на рис. 32 
точное значение корня обозначено х). 

 
Запись алгоритма уточнения корня уравнения f(x) на отрезке [а; b] с заданной точно-

стью ε на алгоритмическом языке приведена в библиотеке алгоритмов (приложение). 
Пользуясь этим алгоритмом, можно искать корни уравнений с помощью каль-

кулятора. 

Упражнения  
1. Постройте алгоритм «прямого» вычисления значения многочлена 2х3 − 3х + 5 при 

х = 6, не пользуясь схемой Горнера. 
2. Вычислите значение многочлена Зх4 + 2х2 + x + 1 при x = 0,1 «прямым» алгорит-

мом и по схеме Горнера. Сравните полученные результаты. Оцените точность вычисления 
каждым методом. 

3. Используя схему Горнера, составьте таблицу значения многочлена: 
а) 2х4 − 1,4х3 − 3,5х2 + 4 на отрезке [ 1; 2] с шагом 0,2 (имеет ли данная функция 

точки экстремума на отрезке [1; 2] ?); 
б) 4x3 − 0,7x2 + х − 2,18 на отрезке [0; 4] с шагом 0,5; 
в) х3 — 2,1x5 + 0,2x2 − 4 на отрезке [−2; 2] с шагом 0,4. 
4. Решите квадратное уравнение: 
а) 3x2 − 1,8x − 2,4 = 0; б) 6,2x2 + 12,1x + 3,81 = 0 

и найдите приближенные значения корней с точностью до 0,001. 

5. Стороны прямоугольника а и b удовлетворяют соотношению 
a
b

b
ba
=

+ , которое 

называется «золотым сечением». В этом случае отношение сторон прямоугольника q = 
a
b  

удовлетворяет квадратному уравнению q2 − q − 1 = 0 (докажите). Найдите приближенно с 
точностью до 0,01 положительный корень этого уравнения. 

6. Через сколько секунд упадет на Землю камень, брошенный с высоты 2 м вверх с 
начальной скоростью 10 м/с? Напомним, что высота в этом случае меняется по закону: 
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h(t) = 2 + 10t − 
2
g t2, где g = 9,8 м/с2. 

7. Вычислите приближенно площадь одной «арки» синусоиды, применяя: 
а) метод «правых» прямоугольников; 
б) метод «левых» прямоугольников. 

8. Вычислите площадь криволинейной трапеции, ограниченной графиком функции у 
= 1+x  и прямыми у = 0, х = 0, х = 3, методом «левых» и «правых» прямоугольников. 
Сравните результаты. 

9. Уточните корни уравнений, пользуясь калькулятором: 
а) sin х − 0,2x = 0 (наименьший положительный корень); 
б) cos x = x2; 
в) х − 10 sin х = 0 (наименьший положительный корень); 
г) lg x = (x − 2)2. 

10. Постройте алгоритм решения биквадратного уравнения, используя алгоритм ре-
шения квадратного уравнения в качестве вспомогательного. 

11. Постройте алгоритм решения уравнения mxlxl =−++ 44 , используя вспомога-
тельные алгоритмы из биб лиотеки. При построении алгоритма используйте метод после-
довательного уточнения. 
12. Постройте алгоритм решения системы уравнений, используя вспомогательный алгоритм из 
библиотеки: 

⎪⎩

⎪
⎨
⎧

=+

=⋅+⋅

.
6
511

,3022

yx

yxyx
 

§ 8. ПОСТРОЕНИЕ АЛГОРИТМОВ ДЛЯ РЕШЕНИЯ ЗАДАЧ ИЗ 
КУРСА ФИЗИКИ 

В данном параграфе рассматривается несколько физических задач. В каждой из них 
речь идет о каком-либо физическом явлении, для которого имеется математическая мо-
дель. По исходным данным задачи, производя определяемые моделью вычисления, можно 
найти требуемый ответ. Вычисления, как это обычно и бывает в практических задачах, 
имеют довольно большой объем. Правила их выполнения формулируются в виде алго-
ритма на алгоритмическом языке. На основе этого алгоритма может быть разработана 
программа для компьютера. Вы, производя вычисления по алгоритму, можете использо-
вать калькулятор. 

Модели, которые мы сейчас будем рассматривать, можно назвать вычислительными. 
Они не дают явной формулы, по которой можно сразу найти требуемые значения искомых 
величин. Вместо этого есть алгоритм, позволяющий приближенно вычислять эти искомые 
значения. При этом вычислении промежутки времени, интервалы длины, участки поверх-
ности разбиваются на мелкие доли, фрагменты. Вычисления производятся отдельно для 
каждого участка. Объем вычислений бывает очень большим. Вычислительные модели 
стали особенно важны после появления ЭВМ, которые могут реально осуществить огром-
ный объем вычислений, требуемый для таких моделей. В примере 1 речь идет о важной 
вычислительной задаче, возникающей в физических исследованиях,— определении зна-
чений параметров по результатам измерений. 
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Пример 1. Пусть задана электрическая цепь (рис. 33). Измеряя напряжение U вольт-

метром, а силу тока I амперметром, можно найти сопротивление R. Результаты будут бо-
лее точными и надежными, если повторим измерения несколько раз, а еще лучше — про-
ведем измерения при нескольких различных значениях U (меняя источник тока в цепи). 

Предположим, что при таком эксперименте для неизвестного резистора получились 
следующие результаты (табл. 15). 

 
Таблица 15 

U, B 1 2 3 4 5 6 7 
I, A 0,010 0,018 0,031 0,042 0,050 0,061 0,072 

 
Нужно найти сопротивление этого резистора. Нанесем эти точки на график (рис. 34). 
 

 
По закону Ома сила тока, проходящего через резистор, зависит от приложенного к 

нему напряжения: 

.1 U
R

I ⋅=  

Таким образом, графиком этой зависимости является прямая, проходящая через на-

чало координат, у которой 
R

k 1
= . Но на одной прямой эти точки не лежат (рис. 34). Это 

связано с тем, что показания амперметра и вольтметра не совсем точные. 
Постараемся провести прямую таким образом, чтобы точки графика были по воз-

можности близки к этой прямой. По методу наименьших квадратов1 угловой коэффициент 
искомой прямой вычисляется по формуле: 

2
7

2
2

2
1

772211

...
...

UUU
IUIUIUK

+++
+++

= , 
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где U1, I1 —значения для первой экспериментальной точки, U2, I2 — для второй точки и т. 

д. Если все величины удалось измерить точно  (все точки легли на прямую   I = 
R
1  U),  то 

в этом случае 
1 Метод наименьших квадратов используется при построении математической модели, описывающей результа-

ты эксперимента в физике, биологии, социологии и других областях. Его обоснование не входит в школьную программу 
и проводится в курсе высшей математики. 

получаем 
RUU

UU
RK 1

...(

...(1

2
7

2
1

2
7

2
1

=
++

++
= , т.е. формула дает ожидаемый результат. 

При таком количестве экспериментальных точек значение К можно вычислить вруч-
ную или с помощью калькулятора. Если же экспериментальных точек много или вычис-
ления должны производиться многократно для разных наборов экспериментальных точек, 
разумно составить программу для ЭВМ. Алгоритм, реализующий данный метод вычисле-
ния, имеет вид: 
алг метод наименьших квадратов (нат N, вещ таб U[l:N],  I[1:N], вещ К) 
 арг N, U, I 
 рез К 
нач 
 цел i 
 вещ числ, знам 
 i := 0 
 числ:= 0 
 знам:= 0 
 пока i ≠ N 
 нц 
 i := i + 1 
 числ := числ + U[i] × I[i] 
 знам := знам + U[i] ×U[i] 
 кц 
 К := числ/знам 
кон 

Пояснение . Между выполнениями серии команд, входящих в цикл, в переменных 
числ и знам хранится сумма первых / членов в числителе и знаменателе. 

Для нашего набора экспериментальных точек в результате вычисления по этой про-
грамме или после вычисления на калькуляторе получается следующий результат: 

01019,01
==

R
k  или R = 98 Ом. 

(При проверке этих результатов на калькуляторе удобно выразить значение силы то-
ка не в амперах, а в миллиамперах. При этом в формулу подсчета углового коэффициента 
искомой прямой нужно ввести множитель 0,001.) 

Построим прямую (рис. 35), соответствующую полученному коэффициенту. 
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Видно, что отклонение экспериментальных точек от найденной прямой действитель-

но мало. 
Пример  2. Шарик массой т = 0,1 кг подвесили к пружине от школьного динамо-

метра, оттянули вниз от положения равновесия на 1 см и отпустили. Он начинает двигать-
ся вверх и через некоторое время проходит через положение равновесия. Найти это время, 
если жесткость пружины, определенная опытным путем, оказалась равной 40 Н/м. 

Начнем с построения математической модели. Введем систему координат. Начало 
координат О поместим в положение равновесия, ось х направим вертикально вниз. Сила, с 
которой отклоненная на расстояние х от положения равновесия пружина действует на те-
ло, равна F = −kx, где k — жесткость пружины, знак «минус» поставлен, так как сила, с 
которой пружина действует на тело,  направлена  противоположно отклонению тела. Ус-

корение а тела равно 
m
F , где т — масса тела. Пусть отрезок времени Δt мал, тогда за вре-

мя Δt ускорение и скорость изменятся мало. Если ускорение равно а, то за время Δt ско-
рость изменяется на Δv = a · Δt. Если скорость равна v, то за время Δt координата тела из-
меняется на Δx = v · Δt. Будем вычислять положение, ускорение и скорость тела, разбив 
ось времени на участки по Δt = 0,01 с. 

Начнем с первого интервала: от t = 0 до t = 0,01. Координата в момент 0 равна 1 см = 

10−2 м по условию задачи. Ускорение находится по формуле а = x
m
k

−  и равно −4 м/с2. В 

начальный момент скорость по условию равнялась 0. В середине интервалa скорость из-

менилась на 
2
ta Δ

⋅  (прошло 
2
tΔ  с) и стала равной 0 − 4 

2
10 2−

⋅ = — 2 · 10−2. За первый ин-

тервал координата изменилась на v · Δt и к началу второго интервала стала равной 0,01 − 2 

· 10-2 · 0,01 = 0,98 · 10-2. В этот момент ускорение становится равным а = 
m
k−  х = −3,92. 

Найдем скорость тела в середине второго интервала. От середины первого интервала до 
середины второго прошло Δt = 0,01, скорость изменилась на a · Δt и стала равной −2 · 10−2 
− 3,92 · 10−2 = −5,92 · 10−2. Зная ее, мы можем определить координату тела к концу второго 
интервала, его ускорение, скорость в середине третьего интервала и т. п. Результаты этих 
вычислений сведены в таблицу 16. 

 
 
 
 
 
 
 

Таблица 16 
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Номер 
интервала 

Время начала интер-
вала, с 

Координата в момент 
начала интервала,  

10-2 м 

Ускорение в момент 
начала интервала, 

м/с2 

Скорость в середине 
интервала,  10-2 м/с 

1 0,00  1,00 -4,00  -2,00  
2 0,01  0,98 -3,92  -5,92 
3 0,02  0,92 -3,68  -9,60 
4 0,03  0,82 -3,20 -12,88 
5 0,04  0,69 -2,76 -15,64 
6 0,05  0,53 -2,12 -17,76 
7 0,06  0,35 -1,40 -19,16 
8 0,07  0,16 -0,64 -19,80 
9 0,08 -0,04  0,16 -19,64 
10 0,09 -0,24  0,96 -18,68 

 
Анализируя результаты вычислений, приведенных в таблице, мы видим: модуль ус-

корения тела по мере его приближения к положению равновесия уменьшается, а модуль 
скорости увеличивается вплоть до точки, которая соответствует 8-му интервалу. В этот 
момент координата меняет знак. Это значит, что тело проходит положение равновесия в 
промежутке между 0,07 и 0,08 секунды от начала движения и по инерции движется даль-
ше, при этом его движение замедляется (модуль скорости уменьшается). 

Запишем теперь все сказанное выше в виде алгоритма, вычисляющего координату х 
точки, в которой находится тело массой т по истечению N промежутков времени, каждый 
из которых равен At (k — жесткость пружины, v0 — начальная скорость). 
алг колебание (вещ т, k, Δt, N, v0, x0, x) 
 apг m, k, Δt, N, v0, x0 
 рез x 
нач цел i; вещ a, v 
 i := 1; x := x0; a := −k · x/m; v := v0 + a · Δt/2 
 пока i ≠ N + 1 
 нц 
 i := i + 1; x := x + v · Δt; a := − k · x/m; v := v + a · Δt 
 кц 
кон 

Пояснение .  Между выполнением повторяющейся серии х равно координате тела в 
начале i-го интервала времени, а — ускорение в тот же момент, v — скорость в середине 
интервала. 
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Пример  3. На краях однородной квадратной пластины (рис. 36, а) поддерживается 
температура, указанная на рисунке. Какова будет температура во внутренних точках пла-
стины? 

Эта температура будет меняться от точки к точке: у нижнего края она будет близка к 
0° С, у верхнего — к 70° С, у левого — к 20° С, у правого — к 60° С. Внутри пластины она 
будет принимать какие-то промежуточные значения. Чтобы найти их, нам придется сде-
лать допущение, что теплообмен с пластиной происходит по ее краям, а в середине ее не 
подогревают и не охлаждают. 

Такие задачи могут решаться с помощью ЭВМ. Поясним метод их решения на при-
мере этой задачи. 

Прежде всего разобьем нашу пластину на много маленьких квадратиков. Будем счи-
тать, что внутри каждого квадратика температура постоянна. Это предположение будет 
справедливо лишь приближенно, но при достаточно малом размере квадратика ошибка 
будет мала (рис. 36, б). 

 
 
Затем мы составим систему уравнений, исходя из следующего принципа: температу-

ра каждого квадратика равна среднему арифметическому температуры четырех соседних 
квадратиков. Этот принцип можно обосновать следующим образом. Если квадратик тем-
пературой Т граничит с квадратиком температурой T1, то через границу идет поток тепла, 
пропорциональный разности температур с некоторым коэффициентом пропорционально-
сти с. Таким образом, через границу квадратика, изображенного на рисунке 37, проходит 
суммарный поток тепла: 

с(Т1 − Т) + с(Т2 − Т) + с(Т3 + Т) + с(Т4 − Т). 
Поскольку мы считаем квадратик теплоизолированным, то эта сумма должна равняться 0. 
Сокращая на с и перенося Т в другую часть, получаем: 

T1 + Т2 + Т3 + Т4 = 4T. 
Мы рассмотрели квадратик, не примыкающий к краю. Если квадратик примыкает к 

краю, то у него не четыре соседа, а только три (или два, если он в углу). В этом случае роль 
соседа со стороны края выполняет окружающая среда, температура которой нам известна. Разо-
бьем нашу пластину на 9 квадратиков. Через t[1,1], t[1,2], ..., t[3,3] обозначим температуру соот-
ветствующих квадратиков. 

  70   
 t[1,1] t[1,2] t[1,3]  

20 t[2,1] t[2,2] t[2,3] 60 
 t[3,1] t[3,2] t[3,3]  

  0   
 
Мы получаем такие уравнения: 

    t[1,1] = ;
4

]1,2[]2,1[7020 tt +++
 

    t[1,2] = ;
4

]2,2[]3,1[70]1,1[ ttt +++
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    t[1,3] = ;
4

]3,2[]2,1[6070 tt +++
 

    t[2,1] = ;
4

]1,3[]2,2[]1,1[20 ttt +++
 

    t[2,2] = ;
4

]2,3[]3,2[]2,1[]1,2[ tttt +++
 

    t[2,3] = ;
4

]3,3[]3,1[]2,2[60 ttt +++
 

    t[3,1] = ;
4

]2,3[]1,2[020 tt +++
 

    t[3,2] = ;
4

]3,3[]2,2[]1,3[0 ttt +++
 

    t[3,3] = .
4

3,2[]2,3[600 tt +++
 

Эта система имеет 9 уравнений и 9 неизвестных. Если бы мы разбили каждую сторо-
ну квадрата не на три, а на N частей, то неизвестных и уравнений было бы N2. На практике 
значения N — это сотни и даже тысячи. Для решения таких трудоемких задач применяют-
ся супер-ЭВМ, делающие миллиарды операций в секунду. Мы, однако, проиллюстрируем 
их решение на примере всего с девятью квадратиками. В этом примере вычисления можно 
провести с помощью калькулятора или даже вручную. 

Один из методов решения нашей системы уравнений таков. 
В качестве первого приближения мы считаем, что все температуры t равны 35. Разу-

меется, при этом уравнения не будут выполнены: их левые части будут равны 35, а правые 
— нет. Запишем те и другие в таблицу на соответствующие места. 

 
                     Левые 
  70   
 30 30 30  

20 30 30 30 60 
 30 30 30  

  0   
 
 

                     Правые 
  70   
 40 43,75 50  

20 31,25 35 41,25 60 
 22,5 26,25 32,5  

  0   
 

Правые части мы вычислили в соответствии с нашими уравнениями; например,40 

есть 
4

35352070 +++ ; 43,75 есть 
4

35357035 +++  и т. д. Числа в правой таблице и будут 

следующими приближениями к искомой температуре. 
Они снова не будут решениями нашего уравнения. Если мы подставим их в уравне-

ние, то, округляя до сотых, получим такие левые и правые части: 
             Левые 

  70   
 40 43,75 50  

20 31,25 35 41,25 60 

 22,5 26,25 32,5  
  0   

 

            Правые 
  70   
 41,25 48,75 53,75  

20 29,38 35,63 44,38 60 

 19,38 22,5 31,88  
  0   
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Все расчеты происходят по тому же алгоритму: число в клетке правой таблицы равно 

среднему арифметическому чисел в левой таблице, расположенных на соседних местах. 
При этом для клеток с краю используются известные нам температуры (20, 70, 60 и 0): 

;
4

25,3175,43702025,41 +++
=  

4
3550704075,48 +++

=  и т.д. 

Числа в правой таблице и составят следующее приближение. Будем повторять это 
много раз: переписывая на каждом шаге числа из правой таблицы в левую и затем находя 
новые значения чисел в правой таблице описанным способом. Мы приведем еще несколь-
ко шагов. При этом не будем дважды повторять одну и ту же таблицу, будем выписывать 
только правые части. 

 
            

  70   
 42,03 50,16 55,78  

20 29,07 36,25 45,32 60 

 17,97 21,72 31,72  
  0   

 
 

  70   
 42,31 50,02 56,37  

20 29,06 36,57 45,94 60 

 17,70 21,49 31,76  
  0   

 
 

  70   
 42,52 51,31 56,74  

20 29,15 36,88 46,18 60 

 17,64 21,51 31,86  
  0   

 
Видно, что с каждым разом значения чисел в каждой следующей таблице становятся 

все более близкими к значениям соответствующих чисел в предыдущей таблице. Это зна-
чит, что разница между левой и правой частями уравнений становится все меньше и 
меньше. Таким образом, мы находим решение наших уравнений все точнее и точнее. 

Мы можем остановиться на нашем последнем приближении, поскольку все равно 
надеяться на точное решение исходной физической задачи не приходится: уж слишком 
мало мы взяли квадратиков. При большем числе квадратиков решать систему «вручную» 
трудно, поэтому приходится поручать исполнение алгоритма компьютеру. 

Запишем на алгоритмическом языке заголовок использованного нами алгоритма. Его 
аргументами будут температуры t1, t2, t3, t4, заданные на четырех сторонах квадрата, а 
также число N отрезков, на которые мы разбивали стороны квадрата. Результатом этого 
алгоритма будет таблица размером N × N, описывающая распределение температуры. 
алг теплопроводность (вещ t1, t2, t3, t4, нат N, вещ таб температура [1:N, l :N]) 
 apг t1, t2, t3, t4, N 
 рез температура 
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Мы не приводим текст этого алгоритма полностью, поскольку ход его выполнения 
был подробно описан. Задачи, аналогичные рассмотренным в данном параграфе, и методы 
их решения типичны для современных применений ЭВМ. Аналогичными методами ре-
шаются упоминавшиеся во введении задачи прогноза погоды и моделирования термо-
ядерной реакции. 

Упражнения  
1. Выпишите формулу для нахождения углового коэффициента прямой по методу 

наименьших квадратов при условии, что ток измерен в миллиамперах, напряже-
ние — в вольтах, а сопротивление — в омах (пример 1). Произведите подсчет по 
формуле. 

 

 
 
2. Измерьте толщину нити. Для этого возьмите карандаш и намотайте на него 10, 20, 

30, ..., 100 витков нити (укладывая ее виток к витку). Измерьте линейкой длину участка 
карандаша, покрытого нитью (рис. 38). С помощью разобранного метода (пример 1) най-
дите толщину нити, используя результаты всех 10 измерений. 

3. Найдите толщину листа бумаги, складывая его в несколько раз и измеряя толщину 
получившейся стопки. 

4. В задаче о движении шарика на пружинке постройте график зависимости положе-
ния шарика х от времени на промежутке в 0,1 с. 

5. В задаче о движении шарика на пружинке проведите расчет движения шарика, 
взяв в качестве Δt не 0,01 с, а 0,02 с. Как изменится результат? 

 
 
6. Найдите распределение температуры во внутренних точках квадратной одно-

родной пластины, считая, что пластина разбита на 9 квадратиков, а распределение темпе-
ратуры на границе пластины дано на рисунке 39. 

Выполните четыре шага вычислений. 
 
 

Рис. 40 
 
7. Найдите распределение температуры во внутренних точках тонкого однородного 

стержня, считая, что стержень разбит на 5 отрезков и что на концах стержня температура 
равна 10 и 20° (рис. 40). Начните с температуры 15° на всех отрезках. Выполните 5 шагов 
вычислений. Так же как в случае пластины, исходите из предположения, что температура 
каждого отрезка равна среднему арифметическому температур соседних отрезков. 

10      20 
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§ 9. АЛГОРИТМЫ РАБОТЫ С ГРАФИЧЕСКОЙ ИНФОРМАЦИЕЙ 
На практике встречаются задачи, результатом решения которых являются чертежи, 

графики, диаграммы, рисунки и другая графическая информация. 
Если задача решается с помощью компьютера, то графическая информация выводит-

ся либо на графический дисплей, на экране которого как в телевизоре эта информация вы-
свечивается, либо на графопостроитель, который вычерчивает графическую информацию 
на листе бумаги. Выбрав координаты на экране дисплея или на листе бумаги, мы будем 
рассматривать их как часть плоскости и в дальнейшем говорить о рисовании на плоско-
сти. 

Для того чтобы вывести графическую информацию, необходимо указать, какие ее 
элементы (точки, отрезки, окружности и т. д.) надо вывести и в какой последовательности. 

Поэтому, так же как и в случае других задач, решение графических задач требует со-
ставления алгоритмов. Эти алгоритмы состоят из специальных графических команд, каж-
дая из которых указывает, какое элементарное графическое действие надо совершить (на-
рисовать точку, отрезок, окружность, многоугольник и т. д.). 

Для рисования с помощью компьютера разработаны удобные наборы графических 
команд. Наш набор команд очень маленький и удобен для рисования простейших геомет-
рических фигур. Он будет использовать прямоугольную систему координат на плоскости. 

Для лучшего понимания правил выполнения графических команд удобно представ-
лять себе исполнителя двигающимся по плоскости и рисующим на ней. Сначала исполни-
тель находится в точке плоскости с координатами (0,0) и смотрит вдоль оси у. 

При выполнении графических команд может изменяться как точка, где находится 
исполнитель, так и направление, куда он смотрит. 

1. Команды вычерчивания: вперед (а), назад (а) 

Для того чтобы нарисовать отрезок, необходимо задать его начальную точку, на-
правление и длину. 

Исполнитель по команде вперед (а) вычерчивает отрезок длиной а с начальной точ-
кой и с направлением таким же, как у исполнителя перед началом выполнения этой ко-
манды.. После выполнения команды исполнитель попадает в концевую точку нарисован-
ного отрезка, а его направление остается неизменным. 

Команда назад (а) отличается от команды вперед (а) только тем, что отрезок вычер-
чивается в направлении, противоположном направлению исполнителя. Направление ис-
полнителя при этом не изменяется, а сам он попадает в конечную точку нарисованного 
отрезка. 

Если выполнить команды 
назад (1) 
вперед (3) 

то получим отрезок, изображенный на рисунке 41. 
 

 



 65

2. Команды поворота: направо (b), налево (b) 
Исполнитель по команде направо (b) поворачивается на b градусов вправо. 
Исполнитель по команде налево (b) поворачивается на b градусов влево. 

 
 

Прим е р  1  (рис. 42). 
алг ломаная 
нач 
 направо (45) 
 вперед (3) 
 направо (90) 
 вперед (3) 
 налево (90) 
 вперед (3) 
кон 
 

 
 
Прим е р  2  (рис. 43). 
алг квадрат 
нач 
 вперед (4) 
 направо (90) 
 вперед (4) 
 направо (90) 
 вперед (4) 
 направо (90) 
 вперед (4) 
кон 

В примере 2 команды вперед (4) и направо (90) многократно повторяются. Запишем 
алгоритм вычерчивания квадрата со стороной длины N. 
алг квадрат (вещ N) 
 арг N 
нач цел I 
 I := 1 
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 пока I ≤ 4 
 нц 
 вперед (N) 
 направо (90) 
 I := I + 1 
 кц 
кон 

3. Команды для вычерчивания изображения, 
состоящего из отдельных элементов: рисуй, не рисуй 

В некоторых случаях возникает необходимость перемещаться по плоскости без вычерчи-
вания. Для этого вводится команда не рисуй. .После этой команды исполнитель перестает 
рисовать отрезки, задаваемые командами вперед и назад, которые используются теперь 
только для передвижения. Для отмены действия команды не рисуй вводится команда ри-
суй. После команды рисуй исполнитель при выполнении команд вперед и назад начинает 
рисовать отрезки. Поясним сказанное на примере. 
Прим е р  3 . Написать слово МИР. 
алг написание слова МИР 
нач 
 рисуй 
 вперед (4); налево (30) 
 назад (2); направо (60) 
 вперед (2); налево (30) 
 назад (4) 
Нарисована буква М (рис. 44). 

 
 
Теперь необходимо оставить промежуток между буквами М и И. 
 не рисуй 
 направо (90); вперед (1) 
 налево (90); рисуй 
Продолжаем, рисуем букву И (рис. 45). 
 вперед (4); не рисуй 
 назад (4); рисуй 
 направо (30); вперед (4,8) 
 налево (30); назад (4) 
Делаем  промежуток между буквами И и Р и рисуем букву Р (рис. 46). 

 
 
 
 не рисуй 
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 направо (90); вперед (1) 
 налево (90) 
 рисуй; вперед (4) 
 направо (90) вперед (2) 
 направо (90) вперед (2) 
 направо (90) вперед (2) 
кон 
 

 
Используя в качестве исполнителя графических команд компьютер, можно оформ-

лять результаты решения задач по математике, физике, химии и т. д. в виде графиков, таб-
лиц, диаграмм, гистограмм, моделировать на экране дисплея явления природы, играть и 
создавать свои компьютерные игры. 

Упражнения  
1. Составьте алгоритмы рисования следующих изображений: 
а) слова МИР, используя только команды вперед, вправо, рисуй, не рисуй; 
б) своих инициалов; 
в) проекции куба. 
2. Исполните алгоритм при N = 4, N = 20. 

алг многоугольник (нат N) 
 арг N 
нач цел I 
 I := 1 
 пока I ≤ N 
 нц 
 вперед (1/N) 
 направо (360/N) 
 I := I + 1 



 68

 кц 
кон 

Что будет происходить с изображением при увеличении N? Чему равен периметр на-
рисованного многоугольника? 

2. Составьте и запишите алгоритмы рисования фигур, изображенных на рисунках 
47—51. 
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ПРИЛОЖЕНИЕ 

1. РАБОТА С КАЛЬКУЛЯТОРОМ 
Всякий алгоритм строится в расчете на какого-либо конкретного исполнителя. Однако ис-

полнение каждого алгоритма включает в себя ряд действий, обязательных для любого исполните-
ля. Эти действия состоят в задании значений аргументов, выполнении очередной команды, осуще-
ствлении перехода от одной команды к другой, получении результата исполнения алгоритма. 

Рассмотрим таких исполнителей алгоритма, как, например, человек с бумагой и карандашом 
и человек с калькулятором. Каждый из этих исполнителей обладает своими особенностями. Чело-
век, вооруженный бумагой и карандашом, может в принципе исполнить вычислительный алго-
ритм, однако при этом все команды алгоритма выполняются вручную. 

Калькулятор позволяет в ряде случаев выполнить отдельные вычислительные команды алго-
ритма. В этом смысле калькулятор является вычислительным средством исполнителя-человека. 

1. Выполнение вычислительных команд алгоритма 
Одним из распространенных типов инженерного калькулятора, или, как его иначе 

называют, калькулятора для научно-технических расчетов, является калькулятор «Элек-
троника БЗ-З6». Он представляет собой вычислительное устройство небольших размеров 
с набором из 25 клавиш и световым экраном (индикатором). Общий вид этого каль-
кулятора изображен на рисунке 52. 

 

 
 
 
Прежде чем переходить к исполнению алгоритма, нужно научиться выполнять при 

помощи калькулятора часто встречающиеся вычисления. С этой целью ниже приводятся 
математические задачи, которые помогают освоить технику вычислений. 

А .  З а д а ч и  н а  н е п о с р е д с т в е н н о е  вы ч и с л е н и е  
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1. Какое из чисел больше: 
a) 110 +  или ;17  з) 4153 или 5341; 
б) tg70° или 10 ;19  и) 2sin3 или 3sin2; 

в) 60 ! или 3060; к) 223 +  или ;65 +  
г) π26 или 200π; л) 2100 или 10020; 

д) 100 sin 40° или 83; м) tg )
100000

1
2

( −
π  или 216? 

е) 10sin29° или ;10  
ж) sin (cos 1) или cos (sin 1); 

2. К какому значению стремятся следующие выражения при увеличении п: 

а) ;5...
раз 
434 21

n

 

б) ;
1

100
2 +n

n
 

в) ;2...22
раз 

444 3444 21
n

+++  

г) );
2
1...

4
1

2
11( n++++  

д) ;)1(1...
4
1

3
1

2
11 1+−++−+− n

n
 

е) );
!

1...
!2

1
!1

11(
n

++++  

ж) );1...
3
1

2
11( 222 n

++++  

з) 11...
3
1

2
11( −++++

n
n n); 

и) ?)1...
3
1

2
11( 888 n

++++  

Б .  З а д а ч и  с  б у к в е н ными  о б о з н а ч е н и ям и  
С помощью калькулятора нельзя доказывать теоремы. Например, нельзя доказать, 

что sin2x + cos2x = 1. Для этого пришлось бы проверить тождество для всех значений х, ко-
торых существует бесконечно много. Однако можно доказать неправильность какого-
нибудь тождества. Для этого достаточно найти всего лишь один пример, который его оп-
ровергает. Например, тождество (х + 1)2 = х2 + х + 1 не выполняется, поскольку, подста-
вив значение x = 1, получаем 4 = 3. 

3. Какие из следующих тождеств можно опровергнуть: 

а) sin2x + cos2x + 2 sin x cos x = 
2
1 ; 

б) tg )
2

( π
+x  = 2ctg x; 

в) tg )
2

5( π+
+x  = 4tg x? 

В .  З а д а ч и  н а  п о с т р о е н и е  г р а ф и к о в  
4. Составьте таблицу значений функции f(х) на отрезке [а, b] с шагом h и в соответ-

ствии с таблицей постройте график функции f(х) на отрезке [а, b]: 
а) f(x) = 2x3 −7x2 + 12, [а, b] = [−5,5], h = 0,5; 
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б) f(x) = 4 x  − sin3x, [a, b] = [0, 2], h = 0,2; 
в) f(x) = х2 – 4 x + 2, [а, b] = [0, 4], h = 0,2; 
Г) f(x) = х3 − 3x2 − 2х, [а, b] = [0, 4 ], h = 0,5. 

Г .  Ан а л и т и ч е с к и е   з а д а ч и  
Эти задачи, кроме непосредственного вычисления на калькуляторе, требуют анализа 

результатов. Каждая из задач представляет собой небольшое исследование. Выводы, ко-
торые можно из него получить, могут оказаться полезными в дальнейшем. 

5. Над числами а1, = 
7
8 , а2 = 1,2, а3 = 15 − , а4 = ,

3
10  а5 = 1 произведите следующие 

действия: 
а) расположите в порядке возрастания; 
б) вычислите среднее арифметическое этих чисел (acp) с точностью до 0,01; 
в) для каждого из данных чисел найдите его отклонение от среднего арифметического Δi = 
|ai − aср|; 

г) вычислите ;
5

1
∑
=

Δ
i

i  

д) вычислите среднее геометрическое 5
iaΠ  и сравните его с ∑

=

Δ
5

1i
i и с aср. 

6. Последовательность задана формулой ее п-го члена: .
4

1
2 +

=
n

an  

а) Вычислите первые восемь членов последовательности. 
б) Найдите а40 и а200. 
в) Чему равно а967 с точностью до 10−3? 
г) Укажите какой-нибудь член последовательности, отличающийся от 0 менее чем на 10−5. 
7. Последовательность задана формулой ее п-го члена: 

.
1
43

+
+

=
n

x n
n  

а) Найдите первые восемь членов последовательности. 
б) Вычислите x100 и х1000. 
в) Для первых восьми членов последовательности вычислите |xn − 3|. 

8. Для последовательности (un) известно: 

u1 = 1, un+1 = ).2(
2

3

≥
+

nu
u

n
n

 

а) Вычислите первые восемь членов этой последовательности. 
б) Найдите иn+1 − иn для п = 1, 2, ..., 8. 
в) Вычислите |ип  − 1,7| для n = 1, 2, ..., 8. 
г) Верно ли, что предел последовательности равен 1,7 при увеличивающихся значениях n? 

9. Последовательность задана формулой ее n-го члена: 

bn = qn, где q = 2;  1; 2; 0,4;  −0,7; 
3
2 . 

а) Вычислите первые шесть, двадцатый и сотый члены последовательности для каждого 
значения q. 
б) Найдите значения q, для которых qn → 0. 
в) Для каждого из указанных значений q подберите номер, начиная с которого qn ≈ 0, с 
точностью до 10−3. 

10. Известны формулы n-х членов последовательностей (ап) и (bn): an = 3
1
n

, bn = n2
1 . 
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а) Выбрав произвольно 10 значений п, вычислите ап, bn, ап + bп, ап − bп, bп − ап, ,
n

n

b
a  

n

n

a
b . 

б) Верно ли, что аn → 0, bn → 0, (аn — bn) → 0, 0→
n

n

b
a ? 

11. Для последовательности (Fn) известно, что F1 = F2=1, Fn= Fn−1 + Fn−2(n ≥ 3) (по-
следовательность Фибоначчи). 
а) Выпишите 10 первых членов последовательности. 
б) Проверьте для F2, F3, Fl0 формулу 

.
5

)
2

51()
2

51( nn

nF

−
−

+

=  

в) Составьте новую последовательность 
n

n
n F

Fq 1+= . 

Г) Стремится ли qn к какому-нибудь числу при увеличении п? 

2. Вычислительные задачи из курсов физики и химии 
Инженерный калькулятор может быть использован при решении различных задач, 

которые встречаются в курсах физики и химии. 
Рассмотрим, например, следующие задачи: 
3адача  1 . Чему равна масса воздуха, впускаемого в цилиндр дизельного двигателя 

объемом 1,58 л при температуре 67° С и давлении 8 · 104 Па (R ≈ 8,31 Дж/(моль · K))? 
Решение . Введем обозначение: V = 1,58 л, t = 67° С, Т = 340 К, Р = 8 · 104 Па, М = 

0,029 кг/моль. 

Запишем уравнение: : откуда ,
RT

PVMmRT
M
mPV ==  

.
34031,8

1058,1029,0108 34

⋅
⋅⋅⋅⋅

=
−

m  

Для вычисления значения этого выражения запишем все числа в следующем виде: 

=
⋅⋅⋅

⋅⋅⋅⋅⋅
=

−−

3

215

1034,010831,0
10158,01029,0108,0m  

.10
34,0831,0
158,029,08,0

1010
101010

34,0831,0
158,029,08,0 2

3

215
−

−−

⋅
⋅
⋅⋅

=
⋅
⋅⋅

⋅
⋅
⋅⋅

=  

Вычислим на калькуляторе выражение 
34,0831,0
158,029,08,0

⋅
⋅⋅  по программе 0,8 .×. 0,29 .×. 

0,158 .÷. 0,831 .÷. 0,34. 
Получим 0,1297373. 
Поскольку данное выражение состоит только из произведений и частного, то соглас-

но правилу округления его надо округлить до такого числа значащих цифр, какое имеет 
наименее точное исходное данное. 

В данном случае 0,8 имеет одну значащую цифру. Поэтому ответ округляется до од-
ной значащей цифры:  m ≈ 1 · 10−3 кг. 

Задача  2 . Рассчитать массу железа, образующегося при восстановлении оксида же-
леза (III) массой 475 кг, содержащего 7% примесей, оксидом углерода (II). 

Решение . Составим уравнение реакции: 
232 3

)2(
56''

23

)1(
160'

CO

моль
кгm

FeCO

моль
кгm

OFe +
=

=+
=
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Найдем массу оксида железа (III) без примесей по программе 475 .П. .ЗП. .÷. .100. 
.×. 7 .П.. 
Получим 442 кг. 

Определим массу полученного железа. Из 160 кг Fe2O3 получается 2 · 56 кг Fe, из 442 

кг: .
160

112442 ⋅
=x  

Вычислим по программе: 442   ×   112  ÷  160  =.. 
После округления получим ответ 309 кг. 
Используя калькулятор, решите следующие задачи: 
1. Определите среднюю квадратическую скорость движения молекул водорода при 

температуре 330К. Масса молекул водорода составляет 3,35 · 10−27 кг. 
2. Паровой молот массой 9,5 т падает с высоты 2,3 м на стальную болванку массой 

230 кг. Сколько раз он должен упасть, чтобы температура болванки поднялась на 45°С? 
На нагревание болванки идет 50% количества теплоты, полученной при ударе. 

3. Найдите отношение массы протона, равной 1,6726 · 10−31 кг, к массе электрона, 
равной 9,1095 · 10-31 кг. 

4. Три резистора, сопротивления которых соответственно равны R1 = 12 Ом, R2 = 17 
Ом, R3 = 2,9 Ом, соединены параллельно. Определите общее сопротивление цепи. 

5. Смешали раствор гидроксида калия массой 185 г с массовой долей (%) растворен-
ного вещества 27% и раствор соляной кислоты массой 65,0 г с массовой долей (%) раство-
ренного вещества 36,5%. Найдите массу образовавшегося хлорида калия. 

6. Из азота массой 59 кг был синтезирован аммиак массой 47 кг. Каков выход аммиа-
ка в процентах от теоретически возможного? 

7. Вычислите массовую долю (%) азота в кальциевой селитре. 
8. К раствору, содержащему 17,6 хлорида меди (II), прилили раствор, содержащий 

23,2 г гидроксида натрия. Вычислите массу образовавшегося гидроксида меди (II) (с точ-
ностью до 0,1 г). 

9. Сколько литров воздуха необходимо для полного сгорания 27,0 л этана? 
10. Запишите молекулярную формулу вещества по данным состава: С — 52%, Н ― 

13%, О — 35%, если относительная плотность паров этого газа по воздуху 1,59. 

3. Использование калькуляторов для выполнения алгоритма 
Пример  1. Алгоритм Евклида. 
Запишем алгоритм в виде, удобном для исполнителя-человека, имеющего инженер-

ный калькулятор. В этой записи наряду с командами алгоритмического языка будут ис-
пользованы команды калькулятора, которые будут обозначаться в виде квадрата с указа-
нием символа команды внутри него. Команды будут разделяться точкой с запятой, как это 
принято в алгоритмическом языке: 

 
нач а;  — ; b; пока а ≠ b нц если a < b то  ↔  ;  =    кц; кон 

 
Проследим на конкретном примере, как исполнитель с калькулятором будет выпол-

нять такой алгоритм. Пусть надо найти НОД(30, 18). Запишем в таблицу (табл. 17) аргу-
менты а и b. В эту же таблицу в процессе выполнения алгоритма будем записывать изме-
ненные значения а и b. В соответствии с алгоритмом исполнитель вводит в калькулятор 
значение а' = 30, нажимает клавишу .—   и вводит значение b = 18. После этого в РИ бу-
дет находиться число 18, а в РР — число 30. Так как а ;> b, то команда  ↔  пропускается и 
исполнитель нажимает клавишу  = . На индикаторе и в РИ появляется новое значение пе-
ременной а = 12. Исполнитель заносит это значение в таблицу (шаг № 2). 

Так как а ≠ b, то необходимо вернуться к началу цикла, что в программе отмечено 
стрелкой. Условие а < b выполнено, поэтому исполнитель выполняет команду  ↔ , в ре-
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зультате чего происходит обмен чисел 12 и 18, записанных в регистрах РИ и PP. Этот об-
мен отражается в таблице (шаг № 3). 

Теперь после выполнения команды  =  на индикаторе и в регистре РИ появляется но-
вое значение а = 6, которое также записывается в таблицу (шаг № 4). 

Заметим, что калькулятор работает в режиме констант, «помня» операцию, которую 
он должен выполнять (вычитание), поэтому после выполнения команды  =   число в РР 
(значение b) не изменяется. 

Процесс будет повторяться до тех пор, пока значения а и b не станут равными (шаг 
№ 6). 

Таблица 17 

Номер шага 1 2 3 4 5 6 

а 30 12 18 6 12 6 

b 18 18 12 12 6 6 

 
Теперь условие окончания цикла (а = b) выполнено, поэтому повторение действий, 

указанных в цикле, прекращается и исполнитель записывает в качестве результата значе-
ние 6. 

Итак, НОД (30, 18) =6. Задача решена. 
Конечно, для чисел 30 и 18 наибольший общий делитель можно легко найти и без 

калькулятора. Такие аргументы были выбраны лишь для того, чтобы показать, как ис-
пользуется калькулятор в процессе выполнения алгоритма. Для других аргументов, напри-
мер 143 524 и 237 176, выполнить алгоритм Евклида без калькулятора уже не так просто. 

П р и м е р 2. Вычислить значения многочлена (по схеме Горнера). 
Алгоритм для исполнителя, использующего калькулятор, будет иметь следующий 

вид: 
нач а;  ×  х; i:= 1; пока i ≤ n нц  = ;  F   ЗП ; ai;  F   П+ ;  F    ИП ; i: = i+ 1 кц кон 
При выполнении этого алгоритма калькулятор также работает в режиме констант. 

Значение х находится в РР и остается неизменным в процессе выполнения алгоритма. Зна-
чение у накапливается в регистре памяти РП. Результат получается в РИ и высвечивается 
на индикаторе. 

Рассмотрим действия исполнителя при вычислении значения многочлена 2х3 + 7х2 + 
4х + 1 при х = 2. 

В этом случае п = 3 и цикл в программе должен быть выполнен три раза при i = 1, 2, 
3. 

Запишем значения коэффициентов многочлена в таблицу 18. Во второй строке этой 
таблицы будем помещать значения у после каждого выполнения цикла. 

Исполнение алгоритма начинается с того, что исполнитель набирает на клавиатуре 
калькулятора значение а0 = 2. Это значение является начальным значением у, поэтому оно 
заносится в таблицу в графу под значением а0. Затем исполнитель нажимает клавишу  ×  и 
набирает значение х = 2. 

При первом выполнении цикла (i = 1) после нажатия клавиши  =  в РИ получается а0 
· х = 4, а значение х = 2 переписывается в РР, где и остается неизменным до окончания 
работы программы. После выполнения команды  F   П+ : значение а0 · х = 4 запоминается 
в РП. Далее исполнитель набирает на клавиатуре значение а1 = 7 и выполняет команду  F   
П+ : значение а1 = 7 прибавляется к значению, хранящемуся в РП. После выполнения ко-
манды  F   ИП  полученное после первого выполнения цикла значение а0 · х + а1 = 11 пе-
реписывается в РИ. Это значение у записывается в таблицу под значением а1 (шаг № 1). 

При втором  выполнении цикла после выполнения команды  =  получается значение 
(а0х + а1) · х = 22, которое снова записывается в РП, «стирая» находившееся там ранее зна-
чение. После вторичного выполнения всех команд цикла получается новое значение у = 
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(а0х + а1) · х + а2 = 26 (шаг № 2). Наконец, после третьего выполнения команд цикла в РИ 
получается результат у = ((а0х + а1) · х + а2) · х + а3 = 53, который исполнитель записывает 
в последнюю графу таблицы (шаг № 3). 

Таблица 18 
Номер шага 0 1 2 3 

ai 2 7 4 1 x = 2 y 2 11 26 53 
 

В рассмотренном примере вычисляли значение многочлена с целочисленными ко-
эффициентами при х = 2 только для того, чтобы проще объяснить существо дела. В дейст-
вительности калькулятор оказывается полезным, когда приходится вычислять значение 
многочлена с вещественными коэффициентами, например такого: 
62,135x4 + 12,721x3 + 5,965х2 + 9,317x + 123,156 при х = 7,121. 

II. БИБЛИОТЕКА АЛГОРИТМОВ 
А 1. Алгоритм вычисления модуля (МОД) действительного числа 

алг МОД (вещ х, вещ у) 
  арг х 
  рез у 
нач 
 если х ≥ 0 
  то у := х 
  иначе у := −х 
  все 
кон 

А 2. Алгоритм поиска большего из двух чисел а и b (БИД) 
алг БИД (вещ а, b, вещ у) 
  арг а, b 
  рез y 
нач 
 если а ≥  b 
  то у := а 
  иначе у := b 
  все 
кон 

A3. Алгоритм решения линейного уравнения ах— b (ЛУР), 
где а и b — произвольные вещественные числа 

алг ЛУР (вещ а, b, вещ х, лит у) 
  арг a, b 
  рез х, у 
нач 
  если а ≠ 0 
  то y := „есть решение" 
  х := b/а 
  иначе 
 если b = 0 
 то у := „х — любое число" 
 иначе у := „решений нет" 
 все 
 все 
кон 
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А 4. Алгоритм решения квадратного уравнения ах2 + bх + с = 0 (КВУР), 
где а, b, с — произвольные вещественные числа (а ≠ 0) 

алг КВУР (вещ а,b,с, вещ х1, х2, лит у) 
 арг а, b, с 
 рез х1, х2, у 
нач вещ D 
 D := b2 −4 · а · с 
 если D < 0 
 то у :== „нет решения" 
 иначе у := „есть решения" 

 
a

Dbx
2

:1
+−

=  

 
a

Dbx
2

:2
−−

=  

 все 
кон 

А5. Алгоритм решения неравенства ax>b (HEP), 
где а и Ь — произвольные вещественные числа 

алг HEP (вещ а, b, с, лит у) 
 арг а, b 
 рез с, у 
нач 
 если а ≠ 0 
 то с := b/а 
 если а > 0 
 то у := „х > с" 
 иначе y := „х < с" 
 все 
 иначе 
 есл b <. 0 
 то у := „x — любое число" 
 иначе у := „решений нет" 
 все 
 все 
кон 

А6. Алгоритм нахождения наибольшего общего делителя (НОД) 
алг НОД (нат М, N, нат НОД) 
 арг М, N 
 рез НОД 
нач нат х, у 
 х := М; у := N 
 пока х ≠ у 
 нц 
 если х > у 
 то х := х — у 
 иначе у := у — х 
 все 
 кц 
 НОД := х 
кон 

А 7. Алгоритм нахождения наименьшего элемента в линейной таблице чисел 
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алг МИНЭЛЕМЕНТ (цел К, N, вещ таб А [К:N] цел l) 
 арг А, К, N 
 рез l 
нач цел i, вещ МИН 
 МИН := А [К] 
 1 := К 
 i := K +1 
 пока i ≤ N 
 нц 
 если МИН > А [i] 
 то 
 МИН := А [i] 
 l := i 
 все 
 i := i + 1 
 кц 
кон 
А 8. Алгоритм упорядочения по возрастанию элементов линейной таблицы чисел 

алг УПОРЯДОЧЕНИЕ (цел п, М, вещ таб С [п:М]) 
 арг С, п, М 
 рез С 
нач цел i, l, вещ R 
 i := n 
 пока i < М 
 нц 
 МИНЭЛЕМЕНТ (i, М, С, l) 
 R := C[i] 
 C[i] := C[l] 
 C[l] := R 
 i := i + 1 
 кц 
кон 

А 9. Алгоритм вычисления значения многочлена 
Рп(х) = а0хп + а1хп-1 +... +ап-1х + ап по схеме Горнера 

алг СХЕМА ГОРНЕРА (цел п, вещ х, вещ таб а[0:п], 
 вещ у) 
 арг п, а, х 
 рез у 
нач цел i 
 i := 0 
 y := a[0] 
 пока i ≠ п 
 нц 
 i := i + 1 
 y := y · x + a[i] 
 кц 
кон 

А 10. Алгоритм нахождения площади криволинейной трапеции, 
ограниченной прямыми х = а, х= b, у = 0 и кривой у = f(x) при условии, 

что для всех х из отрезка [а; b] значения f(x) ≥ 0 
алг ПЛОЩАДЬ (вещ a, b, S, нат п) 
 арг a, b, n 
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 рез S 
нач вещ h, x, нат i 

 
n

abh −
=:  

 S := 0 
 х := а 
 i:= 1 
 пока i ≤ п 
 нц 
 S := S + h · f(x) 
 x := x + h 
 i := i + l 
 кц 
кон 

All. Алгоритм уточнения корня уравнения f(x) = 0 
на отрезке [а; b] с заданной точностью ε при условии, 

 что функция f(x) на отрезке [а; b] монотонна и меняет знак 
алг УТОЧНЕНИЕ КОРНЯ (вещ а, b, ε, вещ х) 
 apг a, b, ε 
 рез х 
нач вещ с 
 пока b − а > 2 · ε 
 нц 

 
2

: bac +
=  

 если f(a) · f(c) ≤ 0 
 то b := с 
 иначе а := с 
 все 
 кц 

 
2

: bax +
=  

кон 
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